【題目】某校舉行全體學(xué)生漢字聽寫比賽,每位學(xué)生聽寫漢字39個.隨機抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.

組別

正確字?jǐn)?shù)x

人數(shù)

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n

根據(jù)以上信息完成下列問題:

(1)統(tǒng)計表中的m=   ,n=   ,并補全條形統(tǒng)計圖;

(2)扇形統(tǒng)計圖中“C所對應(yīng)的圓心角的度數(shù)是   ;

(3)已知該校共有900名學(xué)生,如果聽寫正確的字的個數(shù)少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學(xué)生人數(shù).

【答案】(1)m=30,n=20;(2)90°;(3)450.

【解析】

(1)根據(jù)條形圖和扇形圖確定B組的人數(shù)環(huán)繞所占的百分比求出樣本容量,求出m、n的值;
(2)求出C組所占的百分比,得到所對應(yīng)的圓心角的度數(shù);
(3)求出不合格人數(shù)所占的百分比,求出該校本次聽寫比賽不合格的學(xué)生人數(shù).

(1)從條形圖可知,B組有15人,

從扇形圖可知,B組所占的百分比是15%,D組所占的百分比是30%,E組所占的百分比是20%,

15÷15%=100,

100×30%=30,

100×20%=20,

m=30,n=20;

(2)“C所對應(yīng)的圓心角的度數(shù)是25÷100×360°=90°;

(3)估計這所學(xué)校本次聽寫比賽不合格的

學(xué)生人數(shù)為:900×(10%+15%+25%)

=450人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,、為相交成度角的兩條公路,在上距米有一所小學(xué),拖拉機沿方向以每小時千米的速度行駛,在小學(xué)周圍米范圍內(nèi)會受到拖拉機噪音的影響.試問小學(xué)是否會受到拖拉機噪音的影響?若受到影響,影響時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠家在甲、乙兩家商場銷售同一商品所獲得的利潤分別為,(單位:元),,與銷售數(shù)量x(單位:件)的函數(shù)關(guān)系如圖所示,試根據(jù)圖象解決下列問題:

1)分別求出,關(guān)于x的函數(shù)關(guān)系式;

2)現(xiàn)廠家分配該商品800件給甲商場,400件給乙商場,當(dāng)甲、乙商場售完這批商品后,廠家可獲得的總利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AECD,∠ABC90°,DAB延長線上一點,點EBC邊上,且BEBD,連接AE,DE,DC.

(1)求證:ABE≌△CBD

(2)若∠CAE30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣一個問題:如圖,在ABC中,AB=AC,點P為邊BC上的任一點,過點PPDAB,PEAC,垂足分別為DE,過點CCFAB,垂足為F.求證:PD+PE=CF

小軍的證明思路是:如圖2,連接AP,由ABPACP面積之和等于ABC的面積可以證得:PD+PE=CF

小俊的證明思路是:如圖2,過點PPGCF,垂足為G,可以證得:PD=GFPE=CG,則PD+PE=CF

【變式探究】如圖,當(dāng)點PBC延長線上時,其余條件不變,求證:PDPE=CF;請運用上述解答中所積累的經(jīng)驗和方法完成下題:

【結(jié)論運用】如圖,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點PPGBE、PHBC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個幾何體的小正方體的個數(shù)至少為( )

A. 5 B. 6

C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,有一個等腰直角三角形AOB,∠OAB=90°,直角邊AOx軸上,且AO=1.將Rt△AOB繞原點O順時針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,且A1O=2AO,再將Rt△A1OB1繞原點O順時針旋轉(zhuǎn)90°得到等腰直角三角形A2OB2,且A2O=2A1O,…,依此規(guī)律,得到等腰直角三角形A2018OB2018,則點A2018的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在在△ABC中,已知∠BAC=900,AB=AC,DBC上,且BD=BA,點EBC的延長線上,CE=CA,求∠DAE的度數(shù);

(2)如果把(1)中的“AB=AC”條件去掉,其余條件不變,那么∠DAE的度數(shù)改變嗎?為什么?

(3)如果把(1)中的“∠BAC=900”改成“∠BAC>900其余條件不變,試探究∠DAE∠BAC的數(shù)量關(guān)系式,試證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD位于直角坐標(biāo)系中,AB=2,點D(0,1),以點C為頂點的拋物線y=ax2+bx+c經(jīng)過x軸正半軸上的點A,B,CE⊥x軸于點E.

(1)求點A,B,C的坐標(biāo).

(2)將該拋物線向上平移m個單位恰好經(jīng)過點D,且這時新拋物線交x軸于點M,N.

MN的長.

P是新拋物線對稱軸上一動點,將線段AP繞點A順時針旋轉(zhuǎn)60°AQ,則OQ的最小值為   (直接寫出答案即可)

查看答案和解析>>

同步練習(xí)冊答案