【題目】某商場(chǎng)經(jīng)銷一種成本價(jià)為20/件的商品,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于成本價(jià)的1.8倍,在試銷售過程中發(fā)現(xiàn)每天的銷量y(件)與售價(jià)x(元/件)之間滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表所示:

1)求yx之間的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;

2)該商場(chǎng)銷售這種商品每天所獲得的利潤(rùn)為w元,若每天銷售這種商品需支付人員工資、管理費(fèi)等各項(xiàng)費(fèi)用共200元,求wx之間的函數(shù)表達(dá)式;并求出這種商品銷售單價(jià)定為多少時(shí),才能使商場(chǎng)每天獲取的利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】1;(2,銷售單價(jià)定為36/件時(shí),利潤(rùn)最大,最大為888

【解析】

1)設(shè)yx之間的函數(shù)表達(dá)式為ykx+b,利用待定系數(shù)法求得函數(shù)解析式,再根據(jù)銷售價(jià)不高于成本價(jià)的1.8倍,可得自變量x的取值范圍;

2)根據(jù)(售價(jià)﹣成本)×銷售數(shù)量=銷售利潤(rùn),列出函數(shù)關(guān)系式,然后配方,寫成頂點(diǎn)式,根據(jù)二次函數(shù)的性質(zhì)及問題的實(shí)際意義,可得答案.

解:(1)設(shè)yx之間的函數(shù)表達(dá)式為ykx+b,根據(jù)題意得:,

解得:,

y=﹣2x+140

20×1.836,

∴自變量x的取值范圍是20≤x≤36;

2w=(x20y200

=(220)(﹣2x+140)﹣200

=﹣2x2+180x3000

=﹣2x452+1050,

∵﹣20,

∴拋物線開口向下,當(dāng)x45時(shí),wx的增大而增大,

20≤x≤36,

∴當(dāng)x36時(shí),w取得最大值,最大值為:

236452+1050=﹣2×81+1050888(元).

wx之間的函數(shù)表達(dá)式為w=﹣2x2+180x3000,這種商品銷售單價(jià)定為36/件時(shí),才能使商場(chǎng)每天獲取的利潤(rùn)最大,最大利潤(rùn)是888元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形OABC的頂點(diǎn)O是直角坐標(biāo)系的原點(diǎn),點(diǎn)A、C分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(84),將矩形OABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到矩形ADEF,DE、F分別與B、CO對(duì)應(yīng),EF的延長(zhǎng)線恰好經(jīng)過點(diǎn)CAFBC相交于點(diǎn)Q

1)證明:ACQ是等腰三角形;

2)求點(diǎn)D的坐標(biāo);

3)如圖2,動(dòng)點(diǎn)M從點(diǎn)A出發(fā)在折線AFC上運(yùn)動(dòng)(不與A、C重合),經(jīng)過的路程為x,過點(diǎn)MAO的垂線交AC于點(diǎn)N,記線段MN在運(yùn)動(dòng)過程中掃過的面積為S;求S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市地鐵工程正在加快建設(shè),為了緩解市區(qū)內(nèi)一些主要路段交通擁擠的現(xiàn)狀,交警大隊(duì)在一些主要路口設(shè)立了交通路況指示牌,如圖所示,小明在離指示牌3.2米的點(diǎn)B處測(cè)得指示牌頂端D點(diǎn)和底端E點(diǎn)的仰角分別為52°30°.求路況指示牌DE的高度.(精確到0.01米,參考數(shù)據(jù):≈1.732,sin52°≈0.79cos52°≈0.62, tan52°≈1.28.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AB<AC,點(diǎn)D、F分別為BC、AC的中點(diǎn),E點(diǎn)在邊AC上,連接DE,過點(diǎn)BDE的垂線交AC于點(diǎn)G,垂足為點(diǎn)H,且與四邊形ABDE的周長(zhǎng)相等,設(shè)AC=b,AB=c

1)求線段CE的長(zhǎng)度;

2)求證:DF=EF;

3)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長(zhǎng)為4E、F、GH分別是AB、BCCD、DA上的點(diǎn),且AEBFCGDH.設(shè)A、E兩點(diǎn)間的距離為x,四邊形EFGH的面積為y,則yx的函數(shù)圖象可能是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年女排世界杯于9月在日本舉行,中國(guó)女排以十一連勝的驕人成績(jī)衛(wèi)冕冠軍,充分展現(xiàn)了團(tuán)隊(duì)協(xié)作、頑強(qiáng)拼搏的女排精神.如圖是某次比賽中墊球時(shí)的動(dòng)作,若將墊球后排球的運(yùn)動(dòng)路線近似的看作拋物線,在同一豎直平面內(nèi)建立如圖所示的直角坐標(biāo)系,已知運(yùn)動(dòng)員墊球時(shí)(圖中點(diǎn))離球網(wǎng)的水平距離為5米,排球與地面的垂直距離為0.5米,排球在球網(wǎng)上端0.26米處(圖中點(diǎn))越過球網(wǎng)(女子排球賽中球網(wǎng)上端距地面的高度為2.24米),落地時(shí)(圖中點(diǎn))距球網(wǎng)的水平距離為2.5米,則排球運(yùn)動(dòng)路線的函數(shù)表達(dá)式為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

問題情境

數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們以“三角形的旋轉(zhuǎn)”為主題開展數(shù)學(xué)活動(dòng),是兩個(gè)全等的直角三角形紙片,其中,

解決問題

1)如圖①,智慧小組將繞點(diǎn)順時(shí)針旋轉(zhuǎn),發(fā)現(xiàn)當(dāng)點(diǎn)恰好落在邊上時(shí),,請(qǐng)你幫他們證明這個(gè)結(jié)論;

2)縝密小組在智慧小組的基礎(chǔ)上繼續(xù)探究,連接,當(dāng)C繞點(diǎn)繼續(xù)旋轉(zhuǎn)到如圖②所示的位置時(shí),他們提出,請(qǐng)你幫他們驗(yàn)證這一結(jié)論是否正確,并說明理由;

探索發(fā)現(xiàn)

3)如圖③,勤奮小組在前兩個(gè)小組的啟發(fā)下,繼續(xù)旋轉(zhuǎn),當(dāng)三點(diǎn)共線時(shí),求的長(zhǎng);

4)在圖①的基礎(chǔ)上,寫出一個(gè)邊長(zhǎng)比為的三角形(可添加字母).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎綜合與實(shí)踐小組學(xué)習(xí)了三角函數(shù)后,開展了測(cè)量本校旗桿高度的實(shí)踐活動(dòng).他們制訂了測(cè)量方案,并利用課余時(shí)間完成了實(shí)地測(cè)量.他們?cè)谠撈鞐U底部所在的平地上,選取兩個(gè)不同測(cè)點(diǎn),分別測(cè)量了該旗桿頂端的仰角以及這兩個(gè)測(cè)點(diǎn)之間的距離.為了減小測(cè)量誤差,小組在測(cè)量仰角的度數(shù)以及兩個(gè)測(cè)點(diǎn)之間的距離時(shí),都分別測(cè)量了兩次并取它們的平均值作為測(cè)量結(jié)果,如表是不完整測(cè)量數(shù)據(jù).

課題

測(cè)量旗桿的高度

成員

組長(zhǎng):小穎,組員:小明,小剛,小英

測(cè)量工具

測(cè)量角度的儀器,皮尺等

測(cè)量示意圖

說明:

線段GH表示學(xué)校旗桿,測(cè)量角度的儀器的高度ACBD1.62m,測(cè)點(diǎn)A,BH在同一水平直線上,A,B之間的距離可以直接測(cè)得,且點(diǎn)G,H,AB,CD都在同一豎直平面內(nèi),點(diǎn)CD,E在同一條直線上,點(diǎn)EGH上.

測(cè)量數(shù)據(jù)

測(cè)量項(xiàng)目

第一次

第二次

平均值

GCE的度數(shù)

30.6°

31.4°

31°

GDE的度數(shù)

36.8°

37.2°

37°

A,B之間的距離

10.1m

10.5m

   m

1)任務(wù)一:完成表格中兩次測(cè)點(diǎn)A,B之間的距離的平均值.

2)任務(wù)二:根據(jù)以上測(cè)量結(jié)果,請(qǐng)你幫助該“綜合與實(shí)踐”小組求出學(xué)校旗桿GH的高度.(精確到0.1m)(參考數(shù)據(jù):sin31°0.51cos31°0.86,tan31°0.60,sin37°0.60,cos37°0.80tan37°0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】河南省開封市鐵塔始建于公元1049年(北宋皇祐元年),是國(guó)家重點(diǎn)保護(hù)文物之一,在900多年中,歷經(jīng)了數(shù)次地震、大風(fēng)、水患而巍然屹立,素有“天下第一塔”之稱.如圖,小明在鐵塔一側(cè)的水平面上一個(gè)臺(tái)階的底部A處測(cè)得塔頂P的仰角為45°,走到臺(tái)階頂部B處,又測(cè)得塔頂P的仰角為38.7°,已知臺(tái)階的總高度BC3米,總長(zhǎng)度AC10米,試求鐵塔的高度.(結(jié)果精確到1米,參考數(shù)據(jù):sin38.7°≈0.63,cos38.7°≈0.78,tan38.7°≈0.80

查看答案和解析>>

同步練習(xí)冊(cè)答案