【題目】如圖,某港口P位于東西方向的海岸線上,“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16nmile,“海天”號每小時航行12nmile,它們離開港口一個半小時后相距30nmile,且知道“遠航”號沿東北方向航行,那么“海天”號航行的方向是_______

【答案】西北方向

【解析】根據(jù)路程=速度×?xí)r間分別求得PQ、PR的長,再進一步根據(jù)勾股定理的逆定理可以證明三角形PQR是直角三角形,從而求解.

解:根據(jù)題意,得
PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).
∵242+182=302,
即PQ2+PR2=QR2
∴∠QPR=90°.
由“遠航號”沿東北方向航行可知,∠QPS=45°,則∠SPR=45°,

即“海天”號沿西北方向航行.
“點睛”此題主要是能夠根據(jù)勾股定理的逆定理發(fā)現(xiàn)直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按照三個內(nèi)角的大小,可以將三角形分為銳角三角形、、;按照有幾條邊相等,可以將三角形分為等邊三角形、、.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程承包方指定由甲、乙兩個工程隊完成某項工程,若由甲工程隊單獨做需要40天完成,現(xiàn)在甲、乙兩個工程隊共同做20天后,由于甲工程隊另有其它任務(wù)不再做該工程,剩下工程由乙工程隊再單獨做了20天才完成任務(wù).

1)求乙工程隊單獨完成該工程需要多少天?

2)如果工程承包方要求乙工程隊的工作時間不能超過30天,要完成該工程,甲工程隊至少要工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列4個事件:①異號兩數(shù)相加,和為負數(shù);②異號兩數(shù)相減,差為正數(shù);③異號兩數(shù)相乘,積為正數(shù);④異號兩數(shù)相除,商為負數(shù).必然事件是________,不可能事件是________,隨機事件是________.(將事件的序號填上即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一元二次方程ax2+bx+c=0a≠0)滿足a+b+c=0,那么我們稱這個方程為至和方程;如果一元二次方程ax2+bx+c=0a≠0)滿足a﹣b+c=0那么我們稱這個方程為至美方程,如果一個一元二次方程既是至和方程又是至美方程我們稱之為和美方程.對于和美方程,下列結(jié)論正確的是( )

A. 方程兩根之和等于0

B. 方程有一根等于0

C. 方程有兩個相等的實數(shù)根

D. 方程兩根之積等于0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩點分別位于一個池塘的兩側(cè),池塘西邊有一座假山D,在DB的中點C處有一個雕塑,小川從點A出發(fā),沿直線AC一直向前經(jīng)過點C走到點E,并使CE=CA,然后他測量點E到假山D的距離,則DE的長度就是A、B兩點之間的距離.

(1)你能說明小川這樣做的根據(jù)嗎?

(2)如果小川恰好未帶測量工具,但是知道A和假山D、雕塑C分別相距200米、120米,你能幫助他確定AB的長度范圍嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣1(a0)的圖象經(jīng)過點(1,1),則代數(shù)式3﹣a﹣b的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了反映七、八、九三個年級人數(shù)所占的比例,在繪制統(tǒng)計圖時,首先考慮的統(tǒng)計圖應(yīng)該是_____。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設(shè)點B的對應(yīng)點為點E.若拋物線(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案