分析 根據(jù)三角形的中位線平行于第三邊并等于第三邊的一半,先判斷出AC=BD,又正方形的四個(gè)角都是直角,可以得到正方形的鄰邊互相垂直,然后證出AC與BD垂直,即可得到四邊形ABCD滿足的條件.
解答 答:當(dāng)四邊形ABCD滿足AC=BD且AC⊥BD時(shí),四邊形EFGH為正方形,
證明:∵E、F分別是四邊形ABCD的邊AB、BC的中點(diǎn),
∴EF∥AC,EF=$\frac{1}{2}$AC,
同理,EH∥BD,EH=$\frac{1}{2}$BD,GF=$\frac{1}{2}$BD,GH=$\frac{1}{2}$AC,
∵AC=BD,
∴EF=EH=GH=GF,
∴平行四邊形ABCD是菱形.
∵AC⊥BD,
∴EF⊥EH,
∴四邊形EFGH是正方形.
點(diǎn)評(píng) 本題考查的是三角形的中位線定理、菱形的判定、矩形的性質(zhì)與正方形的判定.解題時(shí)注意中點(diǎn)四邊形的判定:一般中點(diǎn)四邊形是平行四邊形;如果對(duì)角線相等,則得到的中點(diǎn)四邊形是菱形,如果對(duì)角線互相垂直,則得到的中點(diǎn)四邊形是矩形,如果對(duì)角線相等且互相垂直,則得到的中點(diǎn)四邊形是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0是最小的整數(shù) | B. | 任何數(shù)的絕對(duì)值都是正數(shù) | ||
C. | -a是負(fù)數(shù) | D. | 絕對(duì)值等于它本身的數(shù)是正數(shù)和0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com