11.實驗探究:
(1)動手操作:
①如圖1,將一塊直角三角板DEF放置在直角三角板ABC上,使三角板DEF的兩條直角邊DE、DF分別經(jīng)過點B、C,且BC∥EF,已知∠A=30°,則∠ABD+∠ACD=60°;
②如圖2,若直角三角板ABC不動,改變等腰直角三角板DEF的位置,使三角板DEF的兩條直角邊DE、DF仍然分別經(jīng)過點B、C,那么∠ABD+∠ACD=60°;

(2)猜想證明:
如圖3,∠BDC與∠A、∠B、∠C之間存在著什么關(guān)系,并說明理由;
(3)靈活應用:
請你直接利用以上結(jié)論,解決以下列問題:
①如圖4,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC的度數(shù);
②如圖5,∠ABD,∠ACD的10等分線相交于點F1、F2、…、F9,
若∠BDC=120°,∠BF3C=64°,則∠A的度數(shù)為40°.

分析 (1)在△DBC中,根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入計算即可;
(2)根據(jù)三角形內(nèi)角和定理得∠ABC+∠ACB+∠A=180°,∠DBC+∠DCB+∠D=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,即可求得∠A+∠ABD+∠ACD=180°-(180°-∠BDC)=∠BDC,
(3)應用(2)的結(jié)論即可求得.

解答 解:(1)動手操作:
①∵BC∥EF,
∴∠DBC=∠E=∠F=∠DCB=45°,
∴∠ABD=90°-45°=45°,∠ACD=60°-45°=15°,
∴∠ABD+∠ACD=60°;
②在△DBC中,∵∠DBC+∠DCB+∠D=180°,
而∠D=90°,
∴∠DBC+∠DCB=90°;
在Rt△ABC中,
∵∠ABC+∠ACB+∠A=180°,
即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,
而∠DBC+∠DCB=90°,
∴∠ABD+∠ACD=90°-∠A=60°.
故答案為60°;60°;
(2)猜想:∠A+∠B+∠C=∠BDC;
證明:連接BC,
在△DBC中,∵∠DBC+∠DCB+∠D=180°,
∴∠DBC+∠DCB=180°-∠BDC;
在Rt△ABC中,
∵∠ABC+∠ACB+∠A=180°,
即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,
而∠DBC+∠DCB=180°-∠BDC,
∴∠A+∠ABD+∠ACD=180°-(180°-∠BDC)=∠BDC,
即:∠A+∠B+∠C=∠BDC.
(3)靈活應用:
①由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,
∵∠BAC=40°,∠BDC=120°,
∴∠ABD+∠ACD=120°-40°=80°
∵BE平分∠ABD,CE平分∠ACB,
∴∠ABE+∠ACE=40°,
∴∠BEC=40°+40°=80°;
②由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠ABF3+∠ACF3=∠BF3C=64°,
∵∠ABF3=$\frac{3}{10}$∠ABD,∠ACF3=$\frac{3}{10}$∠ACD,
∴ABD+∠ACD=120°-∠A,∠A+$\frac{3}{10}$(∠ABD+∠ACD)=64°,
∴∠A+$\frac{3}{10}$(120°-∠A)=64°,
∴∠A=40°,
故答案為40°.

點評 本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和是180°.準確識別圖性是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

16.已知點E、F、G、H分別為四邊形ABCD的邊AB、BC、CD、DA的中點,若四邊形EFGH為正方形,則原四邊形ABCD應具備什么條件?說明你判斷的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.(1)($\sqrt{5}$)2-$\sqrt{(-4)^{2}}$+$\root{3}{1-1\frac{1}{27}}$-|$\sqrt{\frac{1}{36}}$-1|
(2)$\root{3}{0.125}-\sqrt{3\frac{1}{16}}+|\root{3}{(-\frac{1}{8})^{2}}|$
(3)$\root{3}{\frac{27}{8}}+\sqrt{\frac{1}{64}}-\root{3}{1-\frac{189}{64}}-\sqrt{1-\frac{31}{256}}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

19.如圖,P是矩形ABCD的邊上的動點,當P從A點出發(fā)沿A→D→C→B運動到達B點時,△APB的面積s與運動時間t的函數(shù)關(guān)系的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

6.寫出一對互為相反數(shù)-2的相反數(shù)是2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.計算:
(1)$\frac{{a}^{2}}{a-1}$-a-1
(2)$\frac{{a}^{2}-4}{{a}^{2}-2a+1}$•$\frac{{a}^{2}-1}{{a}^{2}+4a+4}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

3.下列式子是最簡二次根式的是( 。
A.$\sqrt{\frac{1}{2}}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2{a^2}}$D.$\sqrt{8}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

20.若2a2-a-3=0,則5+2a-4a2=-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

1.購買單價為a元的牛奶3盒,單價為b元的面包4個共需(3a+4b)元(用含有a、b的代數(shù)式表示).

查看答案和解析>>

同步練習冊答案