【題目】如圖,我校本部教師樓AD上有“育才中學(xué)”四個(gè)字的展示牌DE,某數(shù)學(xué)興趣小組的同學(xué)準(zhǔn)備利用所學(xué)的三角函數(shù)知識(shí)估測(cè)該教師樓的高度,由于場(chǎng)地有限,不便測(cè)量,所以小明沿坡度i=:1的階梯從看臺(tái)前的B處前行50米到達(dá)C處,測(cè)得展示牌底部D的仰角為45°,展示牌頂部E的仰角為53°(小明的身高忽略不計(jì)),已知展示牌高DE=15米,則該教師樓AD的高度約為( )米.(參考數(shù)據(jù):Sin37°≈0,6,cos 37°≈0,8,tan37°≈0.75,≈1.7)
A. 102.5B. 87.5C. 85D. 70
【答案】B
【解析】
作CF⊥AE于F,CG⊥AB于G,則四邊形AFCG是矩形.解Rt△BCG,求得CG=25米.設(shè)DF=x米,解Rt△DCF,得出CF=DF=x米.再解Rt△ECF,根據(jù)∠CEF的正切值列出方程即可.
解:作CF⊥AE于F,CG⊥AB于G,則四邊形AFCG是矩形.
∵在Rt△BCG中,BC=50,斜坡BC的坡度i=:1
∴tan∠CBG=:1,
∴∠CBG=60°,∴∠BCG=30°,
∴BG=BC=25,CG=25.
設(shè)DF=x.
∵在Rt△DCF中,∠DCF=45°,
∴CF=DF=x.
∵在Rt△ECF中,∠ECF=53°,
∴∠CEF=37°,
∵tan∠CEF==≈0.75,
∴x=45,∴DF=45
∴AD=AF+DF=25+45≈87.5(米),
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)A的坐標(biāo)為(,),點(diǎn)D的坐標(biāo)為(,),且AB∥y軸,AD∥x軸. 點(diǎn)P是拋物線上一點(diǎn),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,PF⊥y軸于點(diǎn) F.
(1)直接寫出點(diǎn)的坐標(biāo);
(2)若點(diǎn)P在第二象限,當(dāng)四邊形PEOF是正方形時(shí),求正方形PEOF的邊長(zhǎng);
(3)以點(diǎn)E為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)F,當(dāng)點(diǎn)P在正方形ABCD內(nèi)部(不包含邊)時(shí),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖分別是某班全體學(xué)生上學(xué)時(shí)乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計(jì)圖(兩圖都不完整),下列結(jié)論錯(cuò)誤的是( )
A. 該班總?cè)藬?shù)為50人B. 步行人數(shù)為30人
C. 乘車人數(shù)是騎車人數(shù)的2.5倍D. 騎車人數(shù)占20%
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.
②請(qǐng)直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017湖北省鄂州市)小明想要測(cè)量學(xué)校食堂和食堂正前方一棵樹(shù)的高度,他從食堂樓底M處出發(fā),向前走3米到達(dá)A處,測(cè)得樹(shù)頂端E的仰角為30°,他又繼續(xù)走下臺(tái)階到達(dá)C處,測(cè)得樹(shù)的頂端E的仰角是60°,再繼續(xù)向前走到大樹(shù)底D處,測(cè)得食堂樓頂N的仰角為45°.已知A點(diǎn)離地面的高度AB=2米,∠BCA=30°,且B、C、D三點(diǎn)在同一直線上.
(1)求樹(shù)DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰直角△ABC中,AB=BC,∠ABC=90°,BD⊥AC于D,點(diǎn)M在AD上,連接BM,過(guò)點(diǎn)C作CN⊥BM于點(diǎn)E,交AB于N,交BD于F,連接DE,AE.
(1)若∠BCN=30°,EN=2,求AN的長(zhǎng);
(2)若DE⊥AE于E,DG⊥DE交CN于G,求證:CE=AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時(shí)間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問(wèn)題:
(1)t= min.
(2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,
①則甲登山的的上升速度是 m/min;
②請(qǐng)求出甲登山過(guò)程中,距地面的高度y(m)與登山時(shí)間x(min)之間的函數(shù)關(guān)系式.
③當(dāng)甲、乙兩人距地面高度差為70m時(shí),求x的值(直接寫出滿足條件的x值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x函數(shù)y=(2﹣k)x2﹣2x+k
(1)若此函數(shù)的圖象與坐標(biāo)軸只有2個(gè)交點(diǎn),求k的值.
(2)求證:關(guān)于x的一元二次方程(2﹣k)x2﹣2x+k=0必有一個(gè)根是1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC在直角坐標(biāo)系內(nèi)的位置如圖所示,反比例函數(shù)y=在第一象限內(nèi)的圖象與BC邊交于點(diǎn)D(4,m),與AB邊交于點(diǎn)E(2,n),△BDE的面積為2.
(1)求m與n的數(shù)量關(guān)系;
(2)當(dāng)時(shí),求反比例函數(shù)的解析式和直線AB的解析式;
(3)設(shè)P是線段AB邊上的點(diǎn),在(2)的條件下,是否存在點(diǎn)P,以B、C、P為頂點(diǎn)的三角形與△EDB相似?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com