【題目】如圖,四邊形ABCD的內(nèi)角∠BAD、∠CDA的角平分線交于點(diǎn)E,∠ABC、∠BCD的角平分線交于點(diǎn)F.
(1)若∠F=70°,則∠ABC+∠BCD= ______ °;∠E= ______ °;
(2)探索∠E與∠F有怎樣的數(shù)量關(guān)系,并說明理由;
(3)給四邊形ABCD添加一個(gè)條件,使得∠E=∠F,所添加的條件為______.
【答案】(1)220;110;(2)∠E+∠F=180°.理由見解析;(3)AB∥CD.
【解析】試題分析:(1)先根據(jù)三角形內(nèi)角和定理求出∠FBC+∠BCF=180°-∠F=110°,再由角平分線定義得出∠ABC=2∠FBC,∠BCD=2∠BCF,那么∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;由四邊形ABCD的內(nèi)角和為360°,得出∠BAD+∠CDA=360°-(∠ABC+∠BCD)=140°.由角平分線定義得出∠DAE=∠BAD,∠ADE=∠CDA,那么∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,然后根據(jù)三角形內(nèi)角和定理求出∠E=180°-(∠DAE+∠ADE)=110°;
(2)由四邊形ABCD的內(nèi)角和為360°得到∠BAD+∠CDA+∠ABC+∠BCD=360°,由角平分線定義得出∠DAE+∠ADE+∠FBC+∠BCF=180°,又根據(jù)三角形內(nèi)角和定理有∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,那么∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,于是∠E+∠F=360°-(∠DAE+∠ADE+∠FBC+∠BCF)=180°;
(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根據(jù)三角形內(nèi)角和定理求出∠DAE+∠ADE=90°,再利用角平分線定義得到∠BAD+∠CDA=180°,于是AB∥CD.
試題解析:(1)∵∠F=70,
∴FBC+∠BCF=180°∠F=110°.
∵∠ABC、∠BCD的角平分線交于點(diǎn)F,
∴∠ABC=2∠FBC,∠BCD=2∠BCF,
∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;
∵四邊形ABCD的內(nèi)角和為360°,
∴∠BAD+∠CDA=360°(∠ABC+∠BCD)=140°.
∵四邊形ABCD的內(nèi)角∠BAD、∠CDA的角平分線交于點(diǎn)E,
∴∠DAE=∠BAD,∠ADE=∠CDA,
∴∠DAE+∠ADE=∠BAD+∠CDA= (∠BAD+∠CDA)=70°,
∴∠E=180°(∠DAE+∠ADE)=110°;
故答案為:220;110;
(2)∠E+∠F=180°.理由如下:
∵∠BAD+∠CDA+∠ABC+∠BCD=360°,
∵四邊形ABCD的內(nèi)角∠BAD、∠CDA的角平分線交于點(diǎn)E,∠ABC、∠BCD的角平分線交于點(diǎn)F,
∴∠DAE+∠ADE+∠FBC+∠BCF=180°,
∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,
∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,
∴∠E+∠F=360°-(∠DAE+∠ADE+∠FBC+∠BCF)=180°;
(3)AB∥CD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,下列條件中,不能說明AB⊥CD的是( )
A. ∠AOD=90°
B. ∠AOC=∠BOC
C. ∠BOC+∠BOD=180°
D. ∠AOC+∠BOD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,、、三點(diǎn)的坐標(biāo)分別為、、.
(1)畫出,則的面積為_______;
(2)在中,點(diǎn)經(jīng)過平移后的對應(yīng)點(diǎn)為,將作同樣的平移得到,畫出平移后的,并寫出點(diǎn),的坐標(biāo)(_______);(_______);
(3)為中一點(diǎn),將點(diǎn)向右平移4個(gè)單位,再向下平移6個(gè)單位得到點(diǎn),則_______,_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,EF∥AD,M,N是線段EF的六等分點(diǎn),若把該正方形紙片卷成一個(gè)圓柱,使點(diǎn)A與點(diǎn)D重合,此時(shí),底面圓的直徑為10cm,則圓柱上M,N兩點(diǎn)間的距離是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(2,0)、(0,4),P是△AOB外接圓⊙C上的一點(diǎn),且∠AOP=45°,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在菱形ABCD中,對角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=6,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)0是坐標(biāo)原點(diǎn).邊長為6的正方形OABC的頂點(diǎn)A,C分別在x軸和y軸的正半軸上,點(diǎn)E是對角線AC上一點(diǎn),連接OE、BE,BE的延長線交OA于點(diǎn)P,若△OCE的面積為12.
(1)求點(diǎn)E的坐標(biāo):
(2)求△OPE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn)A(﹣1,3)和點(diǎn)(2,﹣3),
(1)求一次函數(shù)的解析式;
(2)判斷點(diǎn)C(﹣2,5)是否在該函數(shù)圖象上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com