【題目】如圖,ABCD中,∠ABC的平分線BE交AD于點E.
(1)求證:AE=AB;
(2)若BC=8,CD=6,求DE的長度.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,中的點是邊上的一點,過點的反比例函數(shù)與邊交于點,連接.
(1)如圖1,若點的坐標(biāo)為,點的坐標(biāo)為,且的面積為5,求直線和反比例函數(shù)的解析式;
(2)如圖2,若,過作,與交于點,若,并且的面積為,求反比例函數(shù)的解析式及點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“黃金1號”玉米種子的價格為5元/kg.如果一次購買5kg以上的種子,超過5kg部分的種子價格打8折.
(1)購買3kg種子,需付款 元,購買6kg種子,需付款 元.
(2)設(shè)購買種子x kg,付款金額為y元,寫出y與x之間的函數(shù)解析式.
(3)張大爺要購買種子5千克,李大爺要購買種子4千克,怎樣購買讓他們花錢最少?他們各應(yīng)付款多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AB>BC,AB=AC,DE 是 AB 的垂直平分線,垂足為 D,交 AC 于 E.
(1)若∠ABE=40°,求∠EBC 的度數(shù);
(2)若△ABC 的周長為 41cm,一邊長為 15cm,求△BCE 的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AD=2BC,E為AD的中點,∠ABD=90°.
(1)求證:四邊形BCDE是菱形;
(2)連接CE,若CE=6,BC=5,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點,且DE=DF,連接BF、CE,且∠FBD=35°,∠BDF=75°,下列說法:①△BDF≌CDE;②ABD和△ACD面積相等;③BF∥CE;④∠DEC=70°,其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點A、B在x軸上、點C在y軸上,點A、B、C的坐標(biāo)分別為A(,0),B(3,0),C(0,5),點D在第一象限內(nèi),且∠ADB=60°,則線段CD長的最小值為( 。
A. 2 B. 2﹣2 C. 4 D. 2﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.
(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標(biāo); 若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com