【題目】在矩形ABCD中,AB=1,AD=,AF平分∠DAB,過C點作CE⊥BD于E,延長AF.EC交于點H,下列結論中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正確的是( 。
A. ②③ B. ③④ C. ①②④ D. ②③④
【答案】D
【解析】∵矩形ABCD,
∴AD∥BC,,AO=OC,OD=OB,AC=BD,
∴AO=OB=OD,
∵AB=1,AD=,由勾股定理得:AC=2,
∴∠ABD=60°,
∴△ABO是等邊三角形,
∴AB=OA=OB, ∠BAO=∠AOB=60°,
∵AF平分∠BAD,
∴∠BAF=∠DAF=45°,
∵∠DAF=∠AFB,
∴∠BAF=∠BFA,
,∴②正確;
∵CE⊥BD,,
∴∠ECO=30°,
,
,
∴AC=CH, ∴③正確;
∵CF和AH不垂直, ∴AF≠FH, ∴①錯誤;
∵∠CEO=90°, ∠ECA=30°,
,
BE=3DE, ∴④正確.
正確的有②③④,故選D.
點睛;本題主要考查對等腰三角形的性質,勾股定理,三角形的外角性質,矩形的性質,平行線的性質,等邊三角形的性質和判定等知識點的理解和掌握,綜合運用這些性質進行推理是解此題的關鍵.
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AC為對角線,AC=BC=5,AB=6,AE是△ABC的中線.
(1)用無刻度的直尺畫出△ABC的高CH(保留畫圖痕跡);
(2)求△ACE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1表示同一時刻的韓國首爾時間和北京時間,兩地時差為整數.
(1)設北京時間為x(時),首爾時間為y(時),就0≤x≤12,求y關于x的函數表達式,并填寫下表(同一時刻的兩地時間).
北京時間 | 7:30 | 11:15 | 2:50 |
首爾時間 | 8:30 | 12:15 | 3:50 |
(2)如圖2表示同一時刻的英國倫敦時間(夏時制)和北京時間,兩地時差為整數.如果現在倫敦(夏時制)時間為7:30,那么此時韓國首爾時間是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一個由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個平行四邊形的面積一定可以表示為( )
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C在線段AB上,AC=6cm,MB=10cm,點M、N分別為AC、BC的中點.
(1)求線段BC的長;
(2)求線段MN的長;
(3)若C在線段AB延長線上,且滿足AC﹣BC=b cm,M,N分別是線段AC,BC的中點,你能猜想MN的長度嗎?請寫出你的結論(不需要說明理由).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列3×3網格圖都是由9個相同的小正方形組成,每個網格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:
(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形.
(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形.
(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.
(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《中共中央國務院關于深化教育改革全面推進素質教育的決定》中明確指出:“健康體魄是青少年為祖國和人民服務的基本前提,是中華民族旺盛生命力的體現.” 王老師所在的學校為加強學生的體育鍛煉,需購買若干個足球和籃球,他曾三次在某商場購買過足球和籃球,其中有一次購買時,遇到商場打折銷售,其余兩次均按標價購買,三次購買足球和籃球的數量和費用如下表:
(1)王老師是第_____次購買足球和籃球時,遇到商場打折銷售的;
(2)求足球和籃球的標價;
(3)如果現在商場均以標價的6折對足球和籃球進行促銷,萬老師決定從商場一次性購買足球和籃球60個,且總費用不能超過2500元,那么最多可以購買 _____ 個籃球.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(5,0),菱形OABC的頂點B,C都在第一象限,tan∠AOC= ,將菱形繞點A按順時針方向旋轉角α(0°<∠α<∠AOC)得到菱形FADE(點O的對應點為點F),EF與OC交于點G,連結AG.
(1)求點B的坐標.
(2)當OG=4時,求AG的長.
(3)求證:GA平分∠OGE.
(4)連結BD并延長交x軸于點P,當點P的坐標為(12,0)時,求點G的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛慢車與一輛快車分別從甲、乙兩地同時出發(fā),勻速相向而行,兩車在途中相遇后停留一段時間,然后分別按原速一同駛往甲地后停車。設慢車行駛的時間為x小時,兩車之間的距離為y千米,圖中折線表示y與x之間的函數圖象,請根據圖象解決下列問題:
(1)甲、乙兩地之間的距離為________千米;
(2)求快車和慢車的速度。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com