【題目】如圖,在平面直角坐標(biāo)系中,A(0,1),B(2,0),C(4,3).
(1)求ΔABC的面積;
(2)設(shè)點(diǎn)P在坐標(biāo)軸上,且ΔABP與ΔABC的面積相等,求點(diǎn)P的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=5,AB=8,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自主學(xué)習(xí),請閱讀下列解題過程.
解一元二次不等式:x2﹣5x>0.
解:設(shè)x2﹣5x=0,解得:x1=0,x2=5,則拋物線y=x2﹣5x與x軸的交點(diǎn)坐標(biāo)為(0,0)和(5,0).畫出二次函數(shù)y=x2﹣5x的大致圖象(如圖所示),由圖象可知:當(dāng)x<0,或x>5時函數(shù)圖象位于x軸上方,此時y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集為:x<0或x>5.
通過對上述解題過程的學(xué)習(xí),按其解題的思路和方法解答下列問題:
(1)上述解題過程中,滲透了下列數(shù)學(xué)思想中的 和 .(只填序號)
①轉(zhuǎn)化思想 ②分類討論思想 ③數(shù)形結(jié)合思想
(2)一元二次不等式x2﹣5x<0的解集為 .
(3)用類似的方法寫出一元二次不等式的解集:x2﹣2x﹣3>0. .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,求∠MNA的度數(shù).
(2)連接NB,若AB=8cm,△NBC的周長是14cm.求BC的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥BD,CD⊥MN,垂足分別是B、D點(diǎn),∠FDC=∠EBA.
(1)判斷CD與AB的位置關(guān)系;
(2)BE與DF平行嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個實(shí)數(shù)根x1,x2.
(1)求m的取值范圍;
(2)當(dāng)x12+x22=6x1x2時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句:
①一個數(shù)的絕對值一定是正數(shù);
②﹣a一定是一個負(fù)數(shù);
③沒有絕對值為﹣3的數(shù);
④若|a|=a,則a是一個正數(shù);
⑤在原點(diǎn)左邊離原點(diǎn)越遠(yuǎn)的數(shù)就越小;
正確的有( )個.
A.0
B.3
C.2
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對應(yīng)值列表:
x | … | ﹣3 | - | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中m= .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分;
(3)觀察函數(shù)圖象,寫出2條函數(shù)的性質(zhì);
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個交點(diǎn),所對應(yīng)的方程x2﹣2|x|=0有
②方程x2﹣2|x|=2有 個實(shí)數(shù)根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com