【題目】如圖,在,于點,平分.
(1)若,,求的度數(shù);
(2)若,求的度數(shù).
【答案】(1);(2)
【解析】
(1)根據(jù)角平分線的定義和互余進行計算;
(2)根據(jù)三角形內角和定理和角平分線定義得出∠DAE的度數(shù)等于∠B與∠C差的一半解答即可.
解:(1),,
,
平分,
.
,
,
,
;
(2)∵∠B+∠C+∠BAC=180°,
∴∠BAC=180°∠B∠C,
∵AE平分∠BAC,
∴∠BAE=∠BAC=(180°∠B∠C)=90°(∠B+∠C),
∵AD⊥BC,
∴∠ADE=90°,
而∠ADE=∠B+∠BAD,
∴∠BAD=90°∠B,
∴∠DAE=∠BAD∠BAE=90°∠B)[90°(∠B+∠C)]=(∠C∠B),
∵∠C∠B=20°,
∴∠DAE=×20°=10°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸,軸分別交于,兩點,點 是 軸上一點,沿直線 折疊 剛好落在 軸上處.
請解答下列問題:
(1),兩點的坐標分別為_____________,____________.
(2)求的長;
(3)在軸上存在點,使三角形為等腰三角形,直接寫出的坐標_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形.Rt△ABC的頂點均在格點上,建立平面直角坐標系后,點A的坐標為(﹣4,1),點B的坐標為(﹣1,1).
(1)先將Rt△ABC向右平移5個單位,再向下平移1個單位后得到Rt△A1B1C1.試在圖中畫出圖形Rt△A1B1C1;
(2)將Rt△A1B1C1繞點A1順時針旋轉90°后得到Rt△A2B2C2,試在圖中畫出圖形Rt△A2B2C2.并計算C1C2的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在鈍角三角形中,,,動點從點出發(fā)到點止,動點從點出發(fā)到點止,點運動的速度為,點運動的速度為,如果兩點同時開始運動,那么,
若AD=AE,求值.
若△ADE和△ABC相似,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長為1的單位正方形組成的網(wǎng)格中,按要求畫出坐標系及△A1B1C1及△A2B2C2;
(1)若點A、C的坐標分別為(﹣3,0)、(﹣2,3),請畫出平面直角坐標系并指出點B的坐標;
(2)畫出△ABC關于y軸對稱再向上平移1個單位后的圖形△A1B1C1;
(3)以圖中的點D為位似中心,將△A1B1C1作位似變換且把邊長放大到原來的兩倍,得到△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,S同學把一張6×6的正方形網(wǎng)格紙向上再向右對折兩次后按圖畫實線,剪去多余部分只留下陰影部分,然后展開攤平在一個平面內得到了一幅剪紙圖案.T同學說:“我不用剪紙,我直接在你的圖1②基礎上,通過‘逆向還原’的方式依次畫出相應的與原圖形成軸對稱的圖形也能得出最后的圖案.”畫圖過程如圖2所示.
對于圖3中的另一種剪紙方式,請仿照圖2中“逆向還原”的方式,在圖4①中的正方形網(wǎng)格中畫出還原后的圖案,并判斷它與圖2中最后得到的圖案是否相同.
答:□相同;□不相同.(在相應的方框內打勾)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠BAC=120°,AC 的垂直平分線交 BC 于 F,交 AC 于 E,交 BA 的延長線于 G,若 EG=3,則 BF 的長是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象分別與x、y軸交于點B、A,與反比例函數(shù)的圖象分別交于點C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=2.
(1)求該反比例函數(shù)的解析式;
(2)求線段CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com