如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延長(zhǎng)線于F,連接CD,給出四個(gè)結(jié)論:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB﹣BC=2FC;其中正確的結(jié)論有(     )

A.1個(gè)  B.2個(gè)   C.3個(gè)  D.4個(gè)


D【考點(diǎn)】全等三角形的判定與性質(zhì);角平分線的性質(zhì);等腰直角三角形.

【分析】過(guò)E作EQ⊥AB于Q,作∠ACN=∠BCD,交AD于N,過(guò)D作DH⊥AB于H,根據(jù)角平分線性質(zhì)求出CE=EQ,DF=DH,根據(jù)勾股定理求出AC=AQ,AF=AH,根據(jù)等腰三角形的性質(zhì)和判定求出BQ=QE,即可求出③;根據(jù)三角形外角性質(zhì)求出∠CND=45°,證△ACN≌△BCD,推出CD=CN,即可求出②①;證△DCF≌△DBH,得到CF=BH,AF=AH,即可求出④.

【解答】解:如圖,

過(guò)E作EQ⊥AB于Q,

∵∠ACB=90°,AE平分∠CAB,

∴CE=EQ,

∵∠ACB=90°,AC=BC,

∴∠CBA=∠CAB=45°,

∵EQ⊥AB,

∴∠EQA=∠EQB=90°,

由勾股定理得:AC=AQ,

∴∠QEB=45°=∠CBA,

∴EQ=BQ,

∴AB=AQ+BQ=AC+CE,

∴③正確;

作∠ACN=∠BCD,交AD于N,

∵∠CAD=∠CAB=22.5°=∠BAD,

∴∠ABD=90°﹣22.5°=67.5°,

∴∠DBC=67.5°﹣45°=22.5°=∠CAD,

∴∠DBC=∠CAD,

在△ACN和△BCD中,

,

∴△ACN≌△BCD,

∴CN=CD,AN=BD,

∵∠ACN+∠NCE=90°,

∴∠NCB+∠BCD=90°,

∴∠CND=∠CDA=45°,

∴∠ACN=45°﹣22.5°=22.5°=∠CAN,

∴AN=CN,

∴∠NCE=∠AEC=67.5°,

∴CN=NE,

∴CD=AN=EN=AE,

∵AN=BD,

∴BD=AE,

∴①正確,②正確;

過(guò)D作DH⊥AB于H,

∵∠FCD=∠CAD+∠CDA=67.5°,

∠DBA=90°﹣∠DAB=67.5°,

∴∠FCD=∠DBA,

∵AE平分∠CAB,DF⊥AC,DH⊥AB,

∴DF=DH,

在△DCF和△DBH中

,

∴△DCF≌△DBH,

∴BH=CF,

由勾股定理得:AF=AH,

====2,

∴AC+AB=2AF,

AC+AB=2AC+2CF,

AB﹣AC=2CF,

∵AC=CB,

∴AB﹣CB=2CF,

∴④正確.

故選D

【點(diǎn)評(píng)】本題主要考查了三角形的外角性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)和判定,直角三角形斜邊上中線性質(zhì),全等三角形的性質(zhì)和判定,等腰直角三角形性質(zhì)等知識(shí)點(diǎn)的理解和掌握,能綜合運(yùn)用這些性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在△ABC中,∠C=90°,AD平分∠BAC,且CD=5,則點(diǎn)D到AB的距離為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,∠CAB=∠DBA,再添加一個(gè)條件,不一定能判定△ABC≌△BAD的是(     )

A.AC=BD    B.∠1=∠2   C.AD=BC    D.∠C=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,已知:△ABC中,AB=AC,M是BC的中點(diǎn),D、E分別是AB、AC邊上的點(diǎn),且BD=CE.求證:MD=ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


下列四組線段中,可以構(gòu)成直角三角形的是(     )

A.4,5,6   B.1.5,2,2.5     C.2,3,4   D.1,,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


等腰三角形的兩邊長(zhǎng)分別為2cm和4cm,則這個(gè)三角形的周長(zhǎng)為__________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

(1)在圖中畫(huà)出與△ABC關(guān)于直線l成軸對(duì)稱(chēng)的△A′B′C′;

(2)在直線l上找一點(diǎn)P(在答題紙上圖中標(biāo)出),使PB+PC的長(zhǎng)最短,這個(gè)最短長(zhǎng)度的平方值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


在△ABC中,∠A=50°,當(dāng)∠B的度數(shù)=__________時(shí),△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


勾股定理被譽(yù)為“幾何明珠”,在數(shù)學(xué)的發(fā)展歷程中占有舉足輕重的地位.如圖1是由邊長(zhǎng)相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是由圖1放入長(zhǎng)方形內(nèi)得到的,∠BAC=90°,AB=3,AC=4,點(diǎn)D、E、F、G、H、I 都在長(zhǎng)方形KLMJ的邊上,則長(zhǎng)方形KLMJ的面積為(     )

A.90     B.100   C.110   D.121

查看答案和解析>>

同步練習(xí)冊(cè)答案