【題目】據(jù)我囯古代《周髀算經(jīng)》記載,公元前1120年商高對周公說,將一根直尺折成一個直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括為“勾三,股四、弦五”.像3、4、5這樣為三邊長能構(gòu)成直角三角形的三個正整數(shù),稱為勾股數(shù).
(應(yīng)用舉例)
觀察3,4,5; 5,12,13; 7,24,25;…
可以發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過,并且勾為3時(shí),股,弦;勾為5時(shí),股,弦;
請仿照上面兩組樣例,用發(fā)現(xiàn)的規(guī)律填空:
(1)如果勾為7,則股24=__________;弦25=___________.
(2)如果勾用(,且為奇數(shù))表示時(shí),請用含有的式子表示股和弦,則股=________;弦=_______.
(3)繼續(xù)觀察①4,3,5;②6,8,10;③8,15,17;…,可以發(fā)現(xiàn)各組的第一個數(shù)都是偶數(shù),且從4起也沒有間斷過.請你直接用(為偶數(shù)且)的代數(shù)式來表示直角三角形的另一條直角邊和弦的長.
【答案】(1);;(2);;(3);.
【解析】
(1)根據(jù)所提供的例子發(fā)現(xiàn)股是勾的平方減去1的二分之一,弦是勾的平方加1的二分之一;
(2)股是勾的平方減去4的四分之一,弦是勾的平方加4的四分之一.
(3)根據(jù)題意,得另一條直角邊是一條直角邊的二分之一的平方減去1,弦是一條直角邊的二分之一的平方加上1.
(1)∵勾為3時(shí),股,弦;勾為5時(shí),股,弦;
∴勾為7,股24的算式為,弦25的算式為;
故答案為;;
(2)由題意,得股的算式為;弦的算式為
故答案為;;
(3)由題意,得另一條直角邊的代數(shù)式為;
弦長的代數(shù)式為
故答案為;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的二次函數(shù)
(1)當(dāng)時(shí),求該函數(shù)圖像的頂點(diǎn)坐標(biāo).
(2)在(1)條件下,為該函數(shù)圖像上的一點(diǎn),若關(guān)于原點(diǎn)的對稱點(diǎn)也落在該函數(shù)圖像上,求的值
(3)當(dāng)函數(shù)的圖像經(jīng)過點(diǎn)(1,0)時(shí),若是該函數(shù)圖像上的兩點(diǎn),試比較與的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:
①該產(chǎn)品90天售量(n件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
時(shí)間(第x天) | 1 | 2 | 3 | 10 | … |
日銷售量(n件) | 198 | 196 | 194 | ? | … |
②該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:
時(shí)間(第x天) | 1≤x<50 | 50≤x≤90 |
銷售價(jià)格(元/件) | x+60 | 100 |
(1)求出第10天日銷售量;
(2)設(shè)銷售該產(chǎn)品每天利潤為y元,請寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品的銷售利潤最大?最大利潤是多少?(提示:每天銷售利潤=日銷售量×(每件銷售價(jià)格-每件成本))
(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合.若∠CEF=50°,則∠AOF的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知R△ABDC中,∠C=90°,AD、BE是角平分線,它們相交于P,PF⊥AD于P交BC的延長線于F,交AC于H.
(1)求證:AH+BD=AB;
(2)求證:PF=PA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線y=﹣2x+b與反比例函數(shù)y=交于點(diǎn)A、B,與x軸交于點(diǎn)C.
(1)若A(﹣3,m)、B(1,n).直接寫出不等式﹣2x+b>的解.
(2)求sin∠OCB的值.
(3)若CB﹣CA=5,求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,AC和CB的延長線于點(diǎn)D,E,F.
(1)求證:∠F+∠FEC=2∠A;
(2)過B點(diǎn)作BM∥AC交FD于點(diǎn)M,試探究∠MBC與∠F+∠FEC的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A的坐標(biāo)(0,4),C的坐標(biāo)為(8,0),把矩形折疊,使點(diǎn)C與點(diǎn)A重合,折痕為DE.
求出點(diǎn)E的坐標(biāo).
(2)點(diǎn)M為OC的中點(diǎn),點(diǎn)P為線段AB上一動點(diǎn),作直線EP,分別過點(diǎn)O、C作直線EP的垂線,垂足分別為點(diǎn)F、G.求證:MF=MG
(3)在(2)的條件下,當(dāng)△FMG為等腰直角三角形時(shí),請直接寫出此時(shí)直線EP的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)在第一象限,且,點(diǎn)的坐標(biāo)為,設(shè)的面積為,
(1)當(dāng)點(diǎn)的橫坐標(biāo)為1時(shí),試求的面積.
(2)求S關(guān)于x的函數(shù)表達(dá)式及自變量x的取值范圍.
(3)試判斷的面積能否大于6,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com