【題目】一貨輪在A處測得燈塔P在貨輪的北偏西23°的方向上,隨后貨輪以80海里/時的速度按北偏東30°的方向航行,1小時后到達B處,此時又測得燈塔P在貨輪的北偏西68°的方向上,求此時貨輪距燈塔P的距離PB.(參考數(shù)據(jù):,,

【答案】(海里)

【解析】

BBCAPC,可得∠A=23+30=53,ABC=90-53=37,PBC=45,易得AB=80海里,可得BC的長、PB的長

解:如圖

BBCAPC點,由題意得:∠A=23+30=53,

AB=180=80,PBM=68,ABN=30

ABC=90-53=37,

PBC=180-PBM-ABN-ABC=180-68-37-30=45,

在△ABC中,∠ABC=37,∠BCA=90

sinA===,BC=64,

在△PBC中, ∠BCP=90,

cos∠CBP===,

BP=(海里)

答:此時貨輪距燈塔P的距離PB為海里.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園內(nèi)有座橋,橋的高度是5米,CBDB,坡面AC的傾斜角為45°,為方便老人過橋,市政部門決定降低坡度,使新坡面DC的坡度為i= :3.若新坡角外需留下2米寬的人行道,問離原坡角(A點處)6米的一棵樹是否需要移栽?(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=2(x-2)2與平行于x軸的直線交于點A,B,拋物線頂點為C,△ABC為等邊三角形,求SABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的解答過程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4-(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4y2+4y+8的最小值為4.仿照上面的解答過程,求x2-x+4的最小值和6-2x-x2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,A、B兩個頂點在軸的上方,C的坐標(biāo)是(1,0).以點C為位似中心,x軸的下方作ABC的位似圖形,并把ABC的邊長放大到原來的2,設(shè)點B的對應(yīng)點B′的橫坐標(biāo)是a,則點B的橫坐標(biāo)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場在促銷活動中規(guī)定,顧客每消費100元就能獲得一次抽獎機會.為了活躍氣氛,設(shè)計了兩個抽獎方案:

方案一:轉(zhuǎn)動轉(zhuǎn)盤A一次,轉(zhuǎn)出紅色可領(lǐng)取一份獎品;

方案二:轉(zhuǎn)動轉(zhuǎn)盤B兩次,兩次都轉(zhuǎn)出紅色可領(lǐng)取一份獎品.(兩個轉(zhuǎn)盤都被平均分成3份)如果你獲得一次抽獎機會,你會選擇哪個方案?請用相關(guān)的數(shù)學(xué)知識說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點B的坐標(biāo)為(6,4).

(1)請用直尺(不帶刻度)和圓規(guī)作一條直線AC,它與x軸和y軸的正半軸分別交于點A和點C,且使∠ABC=90°,ABCAOC的面積相等.(作圖不必寫作法,但要保留作圖痕跡.)

(2)問:(1)中這樣的直線AC是否唯一?若唯一,請說明理由;若不唯一,請在圖中畫出所有這樣的直線AC,并寫出與之對應(yīng)的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小梅家的陽臺上放置了一個曬衣架如圖1,圖2是曬衣架的側(cè)面示意圖,A,B兩點立于地面,將曬衣架穩(wěn)固張開,測得張角AOB=62°,立桿OA=OB=140cm,小梅的連衣裙穿在衣架后的總長度為122cm,問將這件連衣裙垂掛在曬衣架上是否會拖落到地面?請通過計算說明理由(參考數(shù)據(jù):sin59°0.86,cos59°0.52,tan59°1.66)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖為水平放置于桌面上的臺燈的示意圖,已知燈臂AB=18cm,燈罩BC=30cm,BAM60°,ABC=90°,求點C到桌面的距離CD(精確到0.1cm).參考數(shù)據(jù):≈1.41,≈1.73.

查看答案和解析>>

同步練習(xí)冊答案