【題目】如圖,西安路與南京路平行,并且與八一街垂直,曙光路與環(huán)城路垂直.如果小明站在南京路與八一街的交叉口,準(zhǔn)備去書店,按圖中的街道行走,最近的路程約為( )

A.600m
B.500m
C.400m
D.300m

【答案】B
【解析】解:如圖所示,
∵BC∥AD,
∴∠DAE=∠ACB,
又∵BC⊥AB,DE⊥AC,
∴∠ABC=∠DEA=90°,
又∵AB=DE=400m,
∴△ABC≌△DEA,
∴EA=BC=300m,
在Rt△ABC中,AC= =500m,
∴CE=AC﹣AE=200,
從B到E有兩種走法:①BA+AE=700m;②BC+CE=500m,
∴最近的路程是500m.
故選B.

由于BC∥AD,那么有∠DAE=∠ACB,由題意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可證△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根據(jù)圖可知從B到E的走法有兩種,分別計算比較即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,直線MN與直線ABCD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).

(1)試判斷直線ABCD的位置關(guān)系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EPCD交于點(diǎn)G,點(diǎn)HMN上的一點(diǎn)且GHEG.求證:PFGH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC=2 ,若把Rt△ABC繞邊AB所在直線旋轉(zhuǎn)一周,則所得幾何體的表面積為(
A.4π
B.4 π
C.8π
D.8 π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目

小敏與同桌小聰討論后,進(jìn)行了如下解答:

1特殊情況探索結(jié)論

當(dāng)點(diǎn)E為AB的中點(diǎn)時,如圖1確定線段AE與的DB大小關(guān)系請你直接寫出結(jié)論:AE__________DB,=).

2特例啟發(fā),解答題目

解:題目中AE與DB的大小關(guān)系是:AE__________DB,=).理由如下:

如圖2過點(diǎn)E作EFBC,交AC于點(diǎn)F,(請你完成以下解答過程

3拓展結(jié)論,設(shè)計新題

在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上且ED=ECABC的邊長為1,AE=2,求CD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某林場計劃購買甲、乙兩種樹苗共800株,甲種樹苗每株24元,乙種樹苗每株30元.相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%、90%.
(1)若購買這兩種樹苗共用去21000元,則甲、乙兩種樹苗各購買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗至多購買多少株?
(3)在(2)的條件下,應(yīng)如何選購樹苗,使購買樹苗的費(fèi)用最低?并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 我們知道在同一平面內(nèi),兩條平行直線的交點(diǎn)有0個,兩條相交直線的交點(diǎn)有1個,平面內(nèi)三條平行直線的交點(diǎn)有0個,經(jīng)過同一點(diǎn)的三條直線的交點(diǎn)有1個……

(1)平面上有三條互不重合的直線,請畫圖探究它們的交點(diǎn)個數(shù);

(2)若平面內(nèi)的五條直線恰有4個交點(diǎn),請畫出符合條件的所有圖形;

(3)在平面內(nèi)畫出10條直線,使它們的交點(diǎn)個數(shù)恰好是32.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線PG平分∠EPF,O為射線PG上一點(diǎn),以O(shè)為圓心,10為半徑作⊙O,分別與∠EPF的兩邊相交于A、B和C、D,連接OA,此時有OA∥PE.
(1)求證:AP=AO;
(2)若tan∠OPB= ,求弦AB的長;
(3)若以圖中已標(biāo)明的點(diǎn)(即P、A、B、C、D、O)構(gòu)造四邊形,則能構(gòu)成菱形的四個點(diǎn)為 , 能構(gòu)成等腰梯形的四個點(diǎn)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在Rt△ABC中,∠C=90°,sinA、sinB是方程x2+px+q=0的兩個根.
(1)求實(shí)數(shù)p、q應(yīng)滿足的條件
(2)若p、q滿足(1)的條件,方程x2+px+q=0的兩個根是否等于Rt△ABC中兩銳角A、B的正弦?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究歸納題:

(1)試驗

如圖1,直線上有兩點(diǎn)AB,圖中有線段___條;

(2)拓展延伸:

2直線上有A,B,C三個點(diǎn),以A為端點(diǎn),有線段AB,線段AC;同樣以C為端點(diǎn),有線段CA,線段CB;以B為端點(diǎn),有線段BA,線段BC,去除重復(fù)線段,圖2共有___條線段;

同樣方法探究出圖3中有_____條線段;

(3)探索歸納:

如果直線上有n(n為正整數(shù))個點(diǎn),則共有________條線段.(用含n的式子表示)

(4)解決問題:

①中職籃(CBA)2018——2019賽季,比賽隊伍數(shù)仍然為20支,截止20181214日,賽程已經(jīng)過半(每兩隊之間都賽了一場),請你幫助計算一下目前一共進(jìn)行了多少場比賽?

20181130日,赤峰至京沈高鐵喀左站客運(yùn)專線路基工程全部完成,將正式進(jìn)入軌道鋪設(shè)階段,預(yù)計202071日通車,北京至赤峰有北京星火站,順義西站,懷柔南站,密云站,興隆西站,安匠站,承德南站,承德縣北站,平泉北站,牛河梁站,喀左站,寧城站、平莊西站、赤峰西站等共計14個車站,請你幫助計算一下,應(yīng)該設(shè)計多少種高鐵車票?

查看答案和解析>>

同步練習(xí)冊答案