【題目】如圖,有兩張矩形紙片ABCDEFGH,ABEF2cm,BCFG8cm.把紙片ABCD交叉疊放在紙片EFGH上,使重疊部分為平行四邊形,且點(diǎn)D與點(diǎn)G重合.當(dāng)兩張紙片交叉所成的角α最小時(shí),sinα等于(  )

A.B.C.D.

【答案】B

【解析】

由“ASA”可證△CDM≌△HDN,可證MD=DN,即可證四邊形DNKM是菱形,當(dāng)點(diǎn)B與點(diǎn)E重合時(shí),兩張紙片交叉所成的角a最小,可求DM=,即可求的值.

解:如圖,

∵∠ADC=HDF=90°
∴∠CDM=NDH,且CD=DH,∠H=C=90°
∴△CDM≌△HDNASA
MD=ND,且四邊形DNKM是平行四邊形
∴四邊形DNKM是菱形
KM=DM
sinα=sinDMC=,
∴當(dāng)點(diǎn)B與點(diǎn)E重合時(shí),兩張紙片交叉所成的角a最小,
設(shè)MD=a=BM,則CM=8-a,
MD2=CD2+MC2,
a2=4+8-a2
a=,
DM=

;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形中,對(duì)角線相交于O.點(diǎn).H為邊上的點(diǎn),過點(diǎn)H,交線段于點(diǎn)E,連接于點(diǎn)F,交于點(diǎn)G.若,則的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,、相交于點(diǎn),邊于點(diǎn),連接

1)如圖,求證:平分

2)如圖,延長于點(diǎn),連接,在不添加任何輔助線的條件下,請(qǐng)直接寫出面積為面積2倍的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】個(gè)只有顏色不同的小球分別裝入甲乙丙三個(gè)布袋里其中甲布袋里有個(gè)紅球,個(gè)白球;乙布袋里有個(gè)紅球,個(gè)白球;丙布袋里有個(gè)紅球,個(gè)白球.

的值,并求從甲、乙兩個(gè)布袋中隨機(jī)各摸出個(gè)小球,求摸出的兩個(gè)小球都是紅球的概率;

利用列表或樹狀圖法求從甲、乙、丙三個(gè)布袋中隨機(jī)各摸出個(gè)小球,求摸出的三個(gè)小球是一紅二白的概率.

將丙袋子中原有的所有小球拿出,另裝個(gè)只有顏色不同的球,其中個(gè)白球,個(gè)紅球,若從袋中取出若千個(gè)紅球,換成相同數(shù)量的黃球.?dāng)嚢杈鶆蚝,使得隨機(jī)從袋中摸出兩個(gè)球,顏色是一白一黃的概率為(不放回拿球)求袋中有幾個(gè)紅球被換成了黃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳生活,綠色出行”,20171,某公司向深圳市場新投放共享單車640.

(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000.請(qǐng)問該公司4月份在深圳市新投放共享單車多少輛?

(2)考慮到自行車市場需求不斷增加,某商城準(zhǔn)備用不超過70000元的資金再購進(jìn)A,B兩種規(guī)格的自行車100輛,已知A型的進(jìn)價(jià)為500/輛,售價(jià)為700/輛,B型車進(jìn)價(jià)為1000/輛,售價(jià)為1300/輛。假設(shè)所進(jìn)車輛全部售完,為了使利潤最大,該商城應(yīng)如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程

1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;

2)當(dāng)k取滿足(1)中條件的最小整數(shù)時(shí),設(shè)方程的兩根為αβ,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦初中生數(shù)學(xué)素養(yǎng)大賽,比賽共設(shè)四個(gè)項(xiàng)目:七巧拼圖、趣題巧解、數(shù)學(xué)應(yīng)用和魔方復(fù)原,每個(gè)項(xiàng)目得分都按一定百分比折算后記入總分,并規(guī)定總分在85分以上(含85分)設(shè)為一等獎(jiǎng).下表為甲、乙、丙三位同學(xué)的得分情況(單位:分),其中甲的部分信息不小心被涂黑了.

據(jù)悉,甲、乙、丙三位同學(xué)的七巧拼圖和魔方復(fù)原兩項(xiàng)得分折算后的分?jǐn)?shù)之和均為20分.設(shè)趣題巧解和數(shù)學(xué)應(yīng)用兩個(gè)項(xiàng)目的折算百分比分別為xy,請(qǐng)用含xy的二元一次方程表示乙同學(xué)趣題巧解和數(shù)學(xué)應(yīng)用兩項(xiàng)得分折算后的分?jǐn)?shù)之和為_________________;如果甲獲得了大賽一等獎(jiǎng),那么甲的數(shù)學(xué)應(yīng)用項(xiàng)目至少獲得_________分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F是正方形ABCD的對(duì)角線AC上的兩點(diǎn),AECF,連接DE、BE、BF、DF

1)求證:四邊形BEDF為菱形;

2)若菱形BEDF的邊長為2,AE2,求正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對(duì)某超市一天內(nèi)購買者的支付方式進(jìn)行調(diào)查統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)本次一共調(diào)查了多少名購買者?

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中A種支付方式所對(duì)應(yīng)的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購買者,請(qǐng)你估計(jì)使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

同步練習(xí)冊(cè)答案