【題目】畢業(yè)在即,重慶實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校初2016級(jí)拍攝了畢業(yè)照,每個(gè)班都得到了若干張風(fēng)格迥異的照片樣品供同學(xué)們選擇.年級(jí)團(tuán)委書記王老師想了解同學(xué)們對(duì)照片的選擇情況,在全年級(jí)進(jìn)行了一次抽樣調(diào)查,按照同學(xué)們選擇的張數(shù)把選擇情況分為四個(gè)層次: A4張;B3張;C2張;D1張.并將調(diào)查結(jié)果繪制成以下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答下列問題:

請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

1)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

2)根據(jù)調(diào)查結(jié)果,估計(jì)初2016級(jí)2000名同學(xué)一共選擇了多少?gòu)埉厴I(yè)照?

【答案】1)詳見解析;(25800

【解析】

1)先由A層次人數(shù)及其所占百分比求出總?cè)藬?shù),總?cè)藬?shù)乘以C層次百分比求出其人數(shù),D層次人數(shù)除以總?cè)藬?shù)可得其所占百分比,繼而根據(jù)各層次人數(shù)之和等于總?cè)藬?shù),百分比之和為1求解可得;

2)先求出樣本中300人拍攝照片張數(shù)的平均數(shù),再乘以總?cè)藬?shù)即可得.

解:(1)∵被調(diào)查的總?cè)藬?shù)為90÷30%300(人),

C層次人數(shù)為300×20%60(人),D層次對(duì)應(yīng)的百分比為×100%10%

B層次人數(shù)為300﹣(90+60+30)=120(人),B層次對(duì)應(yīng)的百分比為1﹣(30%+20%+10%)=40%,

補(bǔ)全圖形如下:

2)∵(張/人),

2000×2.95800(張).

∴估計(jì)初2016級(jí)2000名同學(xué)一共選擇了5800張畢業(yè)照.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,OA=3,OC=4,P為直線AB上一動(dòng)點(diǎn),將直線OP繞點(diǎn)P逆時(shí)針方向旋轉(zhuǎn)90交直線BC于點(diǎn)Q.

(1)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)(不與A,B重合)時(shí),求證:OABQ=APBP;

(2)(1)成立的條件下,設(shè)點(diǎn)P的橫坐標(biāo)為m,線段CQ的長(zhǎng)度為,求出關(guān)于m的函數(shù)解析式,并判斷是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由;

(3)直線AB上是否存在點(diǎn)P,使POQ為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了計(jì)算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點(diǎn)A處,測(cè)得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點(diǎn)B處,再次測(cè)得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,頂點(diǎn)分別在坐標(biāo)軸的正半軸上, ,點(diǎn)在直線,直線與折線有公共點(diǎn).

1)點(diǎn)的坐標(biāo)是 ;

2)若直線經(jīng)過點(diǎn),求直線的解析式;

3)對(duì)于一次函數(shù),當(dāng)的增大而減小時(shí),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y1x2+bx+c與直線y22x+m相交于A14)、B(﹣1,n)兩點(diǎn).

1)求y1y2的解析式;

2)直接寫出y1y2的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x+3x軸交于AB兩點(diǎn),(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)求出直線BC的解析式.

2M為線段BC上方拋物線上一動(dòng)點(diǎn),過Mx軸的垂線交BCH,過MMQBCQ,求出△MHQ周長(zhǎng)最大值并求出此時(shí)M的坐標(biāo);當(dāng)△MHQ的周長(zhǎng)最大時(shí)在對(duì)稱軸上找一點(diǎn)R,使|ARMR|最大,求出此時(shí)R的坐標(biāo).

3T為線段BC上一動(dòng)點(diǎn),將△OCT沿邊OT翻折得到△OCT,是否存在點(diǎn)T使△OCT與△OBC的重疊部分為直角三角形,若存在請(qǐng)求出BT的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象過點(diǎn).

1)求拋物線的解析式;

2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得△PAC的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及△PAC的周長(zhǎng);若不存在,請(qǐng)說明理由;

3)在(2)的條件下,在x軸上方的拋物線上是否存在點(diǎn)M(不與C點(diǎn)重合),使得?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD中,對(duì)角線AC平分∠DCB,且ADAB,CDCB

1)求證:∠B+D180°

2)如圖2,在AC上取一點(diǎn)E,使得BECD,且BECE,點(diǎn)F在線段BC上,連接AF,且ABAF,求證:AECF

3)如圖3,在(2)的條件下,若BEAF交于點(diǎn)G,BFAB27,求tanBGF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交AD于E,交BA的延長(zhǎng)線點(diǎn)F.問:

(1)圖中APD與哪個(gè)三角形全等?并說明理由;

(2)求證:APE∽△FPA;

(3)猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案