【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長線上的一點(diǎn),且AP=AC.
(1)求證:PA是⊙O的切線;
(2)求證:AC2=COCP;
(3)若PD=,求⊙O的直徑.
【答案】(1)證明見解析;
(2)證明見解析;
(3)⊙O的直徑為.
【解析】試題分析:(1)連結(jié)OA、AD,如圖,利用圓周角定理得到∠CAD=90°,∠ADC=∠B=60°,則∠ACD=30°,再利用AP=AC得到∠P=∠ACD=30°,接著根據(jù)圓周角定理得∠AOD=2∠ACD=60°,然后根據(jù)三角形內(nèi)角和定理可計(jì)算出∠OAP=90°,于是根據(jù)切線的判定定理可判斷AP與 O相切;
(2)通過△ACO∽△PCA,得到=,由于AC=AP于是得到結(jié)論;
(3)連接AD,證得△AOD是等邊三角形,得到∠OAD=60°,求得AD=PD=,得到OD=,即可得到結(jié)論.
試題解析:(1)連結(jié)OA、AD,如圖,
∵CD為直徑,
∴∠CAD=90°,
∵∠ADC=∠B=60°,
∴∠ACD=30°,
∵AP=AC,
∴∠P=∠ACD=30°,
∵∠AOD=2∠ACD=60°,
∴∠OAP=180°﹣60°﹣30°=90°,
∴OA⊥PA,
∴AP與⊙O相切;
(2)∵∠P=∠ACP=∠CAO=30°,
∴△ACO∽△PCA,
∴=,
∵AC=AP
∴AC2=CO.CP;
(3)∵AO=DO,∠ADC=60°,
∴△AOD是等邊三角形,
∴∠OAD=60°,
∴∠PAD=30°,
∴∠P=∠PAD,
∴AD=PD=,
∴OD=,
∴⊙O的直徑CD=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C在⊙O上,若∠BAC=45°,OB=2,則圖中陰影部分的面積為( )
A. π-4 B. π-1 C. π-2 D. -2
【答案】C
【解析】試題解析:∵∠BAC=45°,
∴∠BOC=90°,
∴△OBC是等腰直角三角形,
∵OB=2,
∴△OBC的BC邊上的高為:OB=,
∴BC=2
∴S陰影=S扇形OBC﹣S△OBC=.
故選C.
【題型】單選題
【結(jié)束】
10
【題目】夏季的一天,身高為1.6m的小玲想測量一下屋前大樹的高度,她沿著樹影BA由B到A走去,當(dāng)走到C點(diǎn)時(shí),她的影子頂端正好與樹的影子頂端重合,測得BC=3.2m,CA=0.8m,于是得出樹的高度為( )
A.8m B.6.4m C.4.8m D.10m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條漁船某時(shí)刻在位置A觀測燈塔B、C(燈塔B距離A處較近),兩個(gè)燈塔恰好在北偏東65°45′的方向上,漁船向正東方向航行l小時(shí)45分鐘之后到達(dá)D點(diǎn),觀測到燈塔B恰好在正北方向上,已知兩個(gè)燈塔之間的距離是12海里,漁船的速度是16海里/時(shí),又知在燈塔C周圍18.6海里內(nèi)有暗礁,問這條漁船按原來的方向繼續(xù)航行,有沒有觸礁的危險(xiǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校組織的社會(huì)實(shí)踐活動(dòng)中,第一小組負(fù)責(zé)調(diào)查全校10000名同學(xué)每天完成家庭作業(yè)時(shí)間情況,他們隨機(jī)抽取了一部分同學(xué)進(jìn)行調(diào)查,井繪制了所抽取樣本的頻數(shù)分布表和額數(shù)分布直方圖(如圖).
時(shí)間x(小時(shí)) | 頻數(shù) | 百分比 |
0.5≤x<1 | 4 | 8% |
1≤x<1.5 | 5 | 10% |
1.5≤x<2 | a | 40% |
2≤x<2.5 | 15 | 30% |
2.5≤x<3 | 4 | 8% |
x≥3 | 2 | b |
頻數(shù)分布表
請根據(jù)圖中信息解答下列問題:
(1)該小組一共抽查了___________人;
(2)頻數(shù)分布表中的a=___________,b=____________;
(3)將頻數(shù)分布直方圖補(bǔ)充完整(直接畫圖,不寫計(jì)算過程);
(4)《遼寧省落實(shí)教育部等九部門關(guān)于中小學(xué)生減負(fù)措施實(shí)施方案》規(guī)定,初中生每天書面家庭作業(yè)時(shí)間不超過1.5小時(shí),根據(jù)表中數(shù)據(jù),請你提出合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD不添加任何字母和數(shù)字,請你再添加一個(gè)條件∠1=∠2成立(要求給出三個(gè)答案),并選擇其中一種情況加以證明.
條件1:________________________________;
條件2:________________________________;
條件3:________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方成同學(xué)看到一則材料:甲開汽車,乙騎自行車從M地出發(fā)沿一條公路勻速前往N地.設(shè)乙行駛的時(shí)間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關(guān)系如圖1所示.
方成思考后發(fā)現(xiàn)了如圖1的部分正確信息:乙先出發(fā)1h;甲出發(fā)0.5小時(shí)與乙相遇.
請你幫助方成同學(xué)解決以下問題:
(1)分別求出線段BC,CD所在直線的函數(shù)表達(dá)式;
(2)當(dāng)20<y<30時(shí),求t的取值范圍;
(3)分別求出甲,乙行駛的路程S甲,S乙與時(shí)間t的函數(shù)表達(dá)式,并在圖2所給的直角坐標(biāo)系中分別畫出它們的圖象;
(4)丙騎摩托車與乙同時(shí)出發(fā),從N地沿同一公路勻速前往M地,若丙經(jīng)過h與乙相遇,問丙出發(fā)后多少時(shí)間與甲相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的拋物線對稱軸是直線x=1,與x軸有兩個(gè)交點(diǎn),與y軸交點(diǎn)坐標(biāo)是(0,3),把它向下平移2個(gè)單位后,得到新的拋物線解析式是 y=ax2+bx+c,以下四個(gè)結(jié)論:
①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,判斷正確的有( )
A. ②③④ B. ①②③ C. ②③ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,并規(guī)定:顧客購物10元以上就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一區(qū)域就可以獲得相應(yīng)的獎(jiǎng)品。下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
(1)計(jì)算并完成表格:
轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數(shù)m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“鉛筆”的頻率m/n | 0.68 | 0.74 | △ | 0.69 | 0.705 | △ |
(2)請估計(jì),當(dāng)n很大時(shí),頻率將會(huì)接近多少?
(3)假如你去轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,你獲得鉛筆的概率約是多少?
(4)在該轉(zhuǎn)盤中,表示“鉛筆”區(qū)域的扇形的圓心角約是多少?(精確到1°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC上,BD=6,DC=2,點(diǎn)P是AB上的動(dòng)點(diǎn),則PC+PD的最小值為( 。
A.8B.10C.12D.14
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com