【題目】如圖所示的拋物線對(duì)稱軸是直線x=1,與x軸有兩個(gè)交點(diǎn),與y軸交點(diǎn)坐標(biāo)是(0,3),把它向下平移2個(gè)單位后,得到新的拋物線解析式是 y=ax2+bx+c,以下四個(gè)結(jié)論:
①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,判斷正確的有( )
A. ②③④ B. ①②③ C. ②③ D. ①④
【答案】A
【解析】
根據(jù)題意平移后的拋物線的對(duì)稱軸x=-=1,c=3-2=1,
由圖象可知,平移后的拋物線與x軸有兩個(gè)交點(diǎn),
∴b2﹣4ac>0,故①錯(cuò)誤;
∵拋物線開口向上,
∴a>0,
∴b<0,
∴abc<0,故②正確;
∵平移后拋物線與y軸的交點(diǎn)為(0,1),對(duì)稱軸x=1,
∴點(diǎn)(2,1)是點(diǎn)(0,1)的對(duì)稱點(diǎn),
∴當(dāng)x=2時(shí),y=1,
∴4a+2b+c=1,故③正確;
由圖象可知,當(dāng)x=-1時(shí),y>0,
∴a-b+c>0,故④正確.
正確的有②③④.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,則m=________.
【答案】
【解析】試題解析:∵二次函數(shù)有最小值﹣2,
∴y=﹣,
解得:m=.
【題型】填空題
【結(jié)束】
19
【題目】如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-2,3),B(-3,-1),C(-1,1)
(1)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°后的△A2B2C2,并寫出點(diǎn)A2的坐標(biāo);
(3)直接回答:∠AOB與∠A2OB2有什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD及四邊形外一直線l,四個(gè)頂點(diǎn)A、B、C、D到直線l的距離分別為a、b、c、d.
(1)觀察圖形,猜想得出a、b、c、d滿足怎樣的關(guān)系式?證明你的結(jié)論.
(2)現(xiàn)將l向上平移,你得到的結(jié)論還一定成立嗎?請(qǐng)分情況寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.
(1)求證:PA是⊙O的切線;
(2)求證:AC2=COCP;
(3)若PD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)、在直線上,點(diǎn)在線段上,與交于點(diǎn),.求證:.(完成以下填空)
證明:∵(已知),
且( )
∴(等量代換)
∴ ( )
∴( )
又∵(已知)
∴(等量代換)
∴( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,P是CD邊上一點(diǎn),且AP、BP分別平分∠DAB、∠CBA,若AD=5,AP=6,則△APB的面積是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某超市利用一個(gè)帶斜坡的平臺(tái)裝卸貨物,其縱斷面ACFE如圖所示. AE為臺(tái)面,AC垂直于地面,AB表示平臺(tái)前方的斜坡.斜坡的坡角∠ABC為45°,坡長(zhǎng)AB為2m.為保障安全,又便于裝卸貨物,決定減小斜坡AB的坡角,AD 是改造后的斜坡(點(diǎn)D在直線BC上),坡角∠ADC為31°.求斜坡AD底端D與平臺(tái)AC的距離CD.(結(jié)果精確到0.01m)[參考數(shù)據(jù):sin31°=0.515,cos31°=0.857,tan31°=0.601, ≈1.414].
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,CD⊥AB,垂足為D.下列條件中,能證明△ABC是直角三角形的有 (多選、錯(cuò)選不得分).
①∠A+∠B=90°
②AB2=AC2+BC2
③
④CD2=ADBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+2bx+c(b、c為常數(shù)).
(Ⅰ)當(dāng)b=1,c=﹣3時(shí),求二次函數(shù)在﹣2≤x≤2上的最小值;
(Ⅱ)當(dāng)c=3時(shí),求二次函數(shù)在0≤x≤4上的最小值;
(Ⅲ)當(dāng)c=4b2時(shí),若在自變量x的值滿足2b≤x≤2b+3的情況下,與其對(duì)應(yīng)的函數(shù)值y的最小值為21,求此時(shí)二次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com