【題目】閱讀下列材料:通過小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為“真分?jǐn)?shù)”和“假分?jǐn)?shù)”,而假分?jǐn)?shù)都可化為帶分?jǐn)?shù),如:我們定義:在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.
如這樣的分式就是假分式;再如:,這樣的分式就是真分式類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式)
如:;
解決下列問題:
(1)分式是______分式(填“真分式”或“假分式”);
(2)將假分式化為帶分式;
(3)如果x為整數(shù),分式的值為整數(shù),求所有符合條件的x的值.
【答案】(1)真分式;(2);(3)的整數(shù)值為:0或2.
【解析】
(1)根據(jù)閱讀材料中的內(nèi)容可知:分式是真分式;
(2)參照閱讀材料中的例子,把分式的分子化為即可把原分式化為帶分式;
(3)先把分式化成帶分式的形式可得:,由原分式的值為整數(shù),可得的值為整數(shù),由此即可分析得到整數(shù)的值.
(1)由“真分式、假分式”的定義可知,分式是真分式;
故答案為:真分式
(2)∵,
∴分式化為帶分式的結(jié)果為:;
(3)∵,且的值為整數(shù),
∴的值為整數(shù),
又∵的值為整數(shù),
∴,
解得:或,
即的整數(shù)值為:0或2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用直尺和圓規(guī)作一個角等于已知角的示意圖如下,則說明∠A′O′B′=∠AOB的依據(jù)是( )
A.(S.S.S.) B.(S.A.S.) C.(A.S.A.) D.(A.A.S.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)求證:MN=AM+BN.
(2)若過點C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=10,AB=8,點E為邊DC上一動點,連接AE,把△ADE沿AE折疊,使點D落在點D′處,當(dāng)△DD′C是直角三角形時,DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,E為邊BC上的點,且AD⊥BE,D為線段BE的中點,過點E作EF⊥AE,過點A作AF∥BC,且AF、EF相交于點F.
(1)求證:∠EAD=∠BAD;
(2)求證:AC=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點P的坐標(biāo)為(2a+6,a-3)
(1)當(dāng)點P的縱坐標(biāo)為-4,求a的值;
(2)若點P在y軸上,求點P的坐標(biāo);
(3)若點P在第四象限,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2.
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點P,Q分別是邊長為4 cm的等邊△ABC邊AB,BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),都以1 cm/s的速度分別向B,C運動.
(1)連接AQ,CP交于點M,則P,Q運動的過程中,∠CMQ的大小變化嗎?若變化,說明理由;若不變,求出它的度數(shù);
(2)何時△PBQ是直角三角形?
(3)如圖2,若點P,Q在運動到終點后繼續(xù)在射線 AB,BC上運動,直線AQ,CP交于點M,則∠CMQ的度數(shù)為。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,E、F是四邊形ABCD的對角線AC上的兩點,且AF=CE,DF=BE,DF∥BE.
(1)求證:△CDF≌△ABE;
(2)求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com