【題目】甲、乙兩城相距800千米,一輛客車從甲城開往乙城,車速為千米/小時,同時一輛出租車比乙城開往甲城,車速為90千米/小時.

1)設(shè)客車行駛時間為(小時),當(dāng)時,客車與乙城的距離為_______千米(用含的代數(shù)式表示);

2)已知,丙城在甲、乙兩城之間,且與甲城相距260千米.

①求客車與出租車相距200千米時客車的行駛時間;(列方程解答)

②已知客車和出租車在甲、乙之間的處相遇時,出租車乘客小李突然接到開會通知,需要立即返回,此時小李有兩種返回乙城的方案;

方案一:繼續(xù)乘坐出租車到丙城,加油后立刻返回乙城,出租車加油的時間忽略不計;

方案二:在處換乘客車返回乙城.

試通過計算,分析小李選擇哪種方案能更快到達(dá)乙城?

【答案】1)(8003a);(2)小李選擇方案一能更快到達(dá)乙城.

【解析】

1)根據(jù)剩下的路程=總路程-已行駛的路程即可得到答案;

2)①設(shè)當(dāng)客車與出租車相距200千米時客車的行駛時間是小時,分相遇前、相遇后兩種情況列方程解答;

②設(shè)客車和出租車x小時相遇,列方程求出x的值得到丙城與M處之間的距離為60km,再分別計算兩種方案所需的時間即可得到答案.

1)客車已行駛的路程是3a千米,

∴當(dāng)時,客車與乙城的距離為(8003a),

故答案為:(8003a);

2設(shè)當(dāng)客車與出租車相距200千米時客車的行駛時間是小時,

a:當(dāng)客車和出租車沒有相遇時,

6090200800 ,

解得4

b:當(dāng)客車和出租車相遇后,

6090200800,

解得:,

當(dāng)客車與出租車相距200千米時客車的行駛時間是4小時或小時;

設(shè)客車和出租車x小時相遇,

60x90x=800

∴x,

此時客車走的路程為320km,出租車走的路程為480km,

丙城與M處之間的距離為60km,

方案一:小李需要的時間是(6060+48090小時;

方案二:小李需要的時間是480608小時.

8,

∴小李選擇方案一能更快到達(dá)乙城.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一座立交橋的示意圖(道路寬度忽略不計), A為入口, FG為出口,其中直行道為AB,CGEF,且AB=CG=EF ;彎道為以點O為圓心的一段弧,且弧BC,弧ED弧CD所對的圓心角均為90°.甲、乙兩車由A口同時駛?cè)肓⒔粯颍?/span>10m/s的速度行駛,從不同出口駛出. 其間兩車到點O的距離ym)與時間x(s)的對應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯誤的是( )

A. 甲車在立交橋上共行駛8s B. F口出比從G口出多行駛40m

C. 甲車從F口出,乙車從G口出 D. 立交橋總長為150m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在梯形ABCD中,AD∥BCABAD,∠BAD的平分線AEBC于點E,連接DE

1)求證:四邊形ABED是菱形;

2)若∠ABC60°,CE2BE,試判斷△CDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在每個邊長都為1的小正方形組成的網(wǎng)格中,點A、P分別為小正方形的中點,B為格點.

(I)線段AB的長度等于_____;

(Ⅱ)在線段AB上存在一個點Q,使得點Q滿足∠PQA=45°,請你借助給定的網(wǎng)格,并利用不帶刻度的直尺作出∠PQA,并簡要說明你是怎么找到點Q的:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組

請結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得   

(Ⅱ)解不等式②,得   

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:

(Ⅳ)原不等式組的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為a的等邊三角形,記為第1個等邊三角形,取其各邊的三等分點,順次連接得到一個正六邊形,記為第1個正六邊形,取這個正六邊形不相鄰的三邊中點,順次連接又得到一個等邊三角形,記為第2個等邊三角形,取其各邊的三等分點,順次連接又得到一個正六邊形,記為第2個正六邊形(如圖),,按此方式依次操作,則第6個正六邊形的邊長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的角平分線,,的角平分線,

1)求;

2點以每秒的速度逆時針方向旋轉(zhuǎn)秒(),為何值時

3)射線點以每秒的速度逆時針方向旋轉(zhuǎn),射線點以每秒的速度順時針方向旋轉(zhuǎn),若射線同時開始旋轉(zhuǎn)秒()后得到,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標(biāo)為(n,6),點C的坐標(biāo)為(﹣2,0),且tanACO=2.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程m為常數(shù)).

1)如果方程有兩個不相等的實數(shù)根,求m的取值范圍.

2)如果方程有兩個相等的實數(shù)根,求m的值。

3)如果方程沒有實數(shù)根,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案