【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0),C2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t

①當(dāng)SACPSACN時(shí),求點(diǎn)P的坐標(biāo);

②是否存在點(diǎn)P,使得ACP是以AC為斜邊的直角三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

3)若拋物線的對(duì)稱軸與直線AC相交于點(diǎn)B,E為直線AC上的任意一點(diǎn),過點(diǎn)EEFBD交拋物線于點(diǎn)F,以B,D,E,F為頂點(diǎn)的四邊形能否為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);若不能,請(qǐng)說明理由.

【答案】1)拋物線解析式為y=﹣x2+2x+3,直線AC解析式為yx+1;(2)①P1,4),②P,);(3)點(diǎn)E的坐標(biāo)為:(0,1)或(,)或(,

【解析】

1)設(shè)直線AC的解析式為y=mx+n,根據(jù)二次函數(shù)和一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用待定系數(shù)法求出b、cm、n的值,即可得答案;(2)①根據(jù)二次函數(shù)解析式可得N點(diǎn)坐標(biāo),過點(diǎn)NNP//AC,根據(jù)平行線間的距離相等可得SACPSCAN,設(shè)直線NP的解析式為y=kx+a,由NP//AC可得k=1,把N點(diǎn)坐標(biāo)代入可得a=3,可得直線NP的解析式,聯(lián)立直線NP與二次函數(shù)解析式即可得P點(diǎn)坐標(biāo);②過PPSx軸于S,過CCKPSK,則∠CKP=∠PSA90°,根據(jù)點(diǎn)A、C、P、的坐標(biāo)可用t表示出CKPK、PSAS的長,根據(jù)直角三角形兩銳角的互余關(guān)系可得∠APS=∠PCK,即可證明APS∽△PCK,根據(jù)相似三角形的性質(zhì)列方程求出t值即可;(3)把二次函數(shù)解析式配方,可得頂點(diǎn)D的坐標(biāo),可求出BD的長,設(shè)點(diǎn)Em,m+1),可用m表示點(diǎn)F的坐標(biāo),即可表示出EF的長,根據(jù)平行四邊形的性質(zhì)可得EF=BD,列方程求出m的值即可得答案.

1)將A(﹣1,0),C2,3)代入y=﹣x2+bx+c中,得

解得:,

∴拋物線解析式為y=﹣x2+2x+3

設(shè)直線AC解析式為ymx+n,

∵點(diǎn)A-10)、C2,3)在直線AC上,

,

解得:,

∴直線AC解析式為yx+1.

2)①在y=﹣x2+2x+3中,令x0,得y3,

N03),

∵點(diǎn)P的橫坐標(biāo)為t,點(diǎn)P在拋物線y=-x2+2x+3圖象上,

Pt,﹣t2+2t+3),

如圖,過點(diǎn)PPH//AC,

∵平行線間的距離相等,

SACPSCAN,

設(shè)直線NP的解析式為y=kx+a,

k=1,

N0,3)代入得a=3,

∴直線NP的解析式為y=x+3,

聯(lián)立直線NP與拋物線解析式得,

解得:(舍去),

P1,4.

②如圖2,過PPSx軸于S,過CCKPSK,則∠CKP=∠PSA90°

Pt,﹣t2+2t+3),A(﹣1,0),C2,3),

CK2t,PK=﹣t2+2t,PS=﹣t2+2t+3,ASt﹣(﹣1)=t+1,

∵△ACP是以AC為斜邊的直角三角形,

∴∠APS+CPK=∠APC90°,

∵∠PCK+CPK90°,

∴∠APS=∠PCK

∴△APS∽△PCK,

,即,

解得:t,

P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),

∴﹣1t2

2,

t

∴﹣t2+2t+3=,

P).

3)∵y=﹣x2+2x+3=﹣(x12+4,

∴頂點(diǎn)D14),

B12),BD2

∵點(diǎn)E在直線AC上,AC解析式為y=x+1,

∴設(shè)點(diǎn)Em,m+1),

B,D,E,F為頂點(diǎn)的四邊形為平行四邊形,

EF=BD,

EF//BDBD為拋物線對(duì)稱軸,

Fm,﹣m2+2m+3),EF

m2-m-2±2,解得:m10m21(舍去),m3,m4,

∴,以BD,EF為頂點(diǎn)的四邊形能為平行四邊形,點(diǎn)E的坐標(biāo)為:(0,1)或()或(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對(duì)稱軸為直線,且拋物線經(jīng)過,兩點(diǎn),與軸交于點(diǎn).

1)若直線經(jīng)過、兩點(diǎn),求直線和拋物線的解析式;

2)設(shè)點(diǎn)為拋物線上的一個(gè)動(dòng)點(diǎn),聯(lián)結(jié),若是以為直角邊的直角三角形,求此時(shí)點(diǎn)的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3x軸交于A(﹣4,0)、B(﹣l,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是第三象限的拋物線上一動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,△ACD的面積為量求出Sm的函數(shù)關(guān)系式,并確定m為何值時(shí)S有最大值,最大值是多少?

(3)若點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),是否存在點(diǎn)P使得∠APC=90°?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小董設(shè)計(jì)的作已知圓的內(nèi)接正三角形的尺規(guī)作圖過程.

已知:⊙O.

求作:⊙O的內(nèi)接正三角形.

作法:如圖,

①作直徑AB;

②以B為圓心,OB為半徑作弧,與⊙O交于C,D兩點(diǎn);

③連接AC,AD,CD.

所以△ACD就是所求的三角形.

根據(jù)小董設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明:在⊙O中,連接OC,OD,BC,BD,

OC=OB=BC,

∴△OBC為等邊三角形(_______________)(填推理的依據(jù)).

∴∠BOC=60°.

∴∠AOC=180°-BOC=120°.

同理∠AOD=120°,

∴∠COD=AOC=AOD=120°.

AC=CD=AD(_______________)(填推理的依據(jù)).

∴△ACD是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過點(diǎn)A,0),直線y=kx-2k+3O交于B、C兩點(diǎn),則弦BC的長的最小值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西省第十五屆運(yùn)動(dòng)會(huì)乒乓球比賽于2018813日上午在山西省體育博物館的比賽場館內(nèi)正式拉開了帷幕.第十五屆運(yùn)動(dòng)會(huì)競技體育組乒乓球項(xiàng)目產(chǎn)生的決賽運(yùn)動(dòng)員名單中太原市共27人,其中甲組有甲、乙、丙、丁四名女子運(yùn)動(dòng)員,若進(jìn)行一次乒乓球單打比賽,要通過抽簽從中選出兩名運(yùn)動(dòng)員打第一場比賽.

1)若已確定甲打第一場,再從其余三名運(yùn)動(dòng)員中隨機(jī)選取一位,求恰好選中乙的概率;

2)若兩名運(yùn)動(dòng)員都不確定,請(qǐng)用樹狀圖法或列表法,求恰好選中甲、乙兩名運(yùn)動(dòng)員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我省南部的南宮山景區(qū),為吸引游客組團(tuán)來此旅游特推出了如下門票收費(fèi)標(biāo)準(zhǔn):

標(biāo)準(zhǔn)一:如果人數(shù)不超過20人,門票價(jià)格70/

標(biāo)準(zhǔn)二:如果人數(shù)超過20人,每超過1人,門票價(jià)格降低2元,但門票價(jià)格不低于55/

1)若某單位組織22名員工去南宮山景區(qū)旅游,則購買門票共需多少元?

2)若某單位共支付南宮山景區(qū)門票費(fèi)用1500元,試求該單位這次共有多少名員工去南宮山旅游.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,三條內(nèi)角平分線交于點(diǎn),過點(diǎn)垂線,分別交、于點(diǎn)、,請(qǐng)寫出圖中相似的三角形,并說明其中兩對(duì)相似的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿BC翻折得到DBC,再將DBCC點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到FEC,延長BDEFH,已知∠ABC30°,∠BAC90°,AC1,則四邊形CDHF的面積為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案