【題目】小明一家利用國慶八天駕車到某景點旅游,小汽車出發(fā)前油箱有油35L,行駛?cè)舾尚r后,途中在加油站加油若干升,油箱中余油量Q(L)與行駛時間t(h)之間的關(guān)系如圖所示,根據(jù)圖像回答下列問題:
(1)小汽車行駛______h后加油,中途加油_______L
(2)求加油前油箱余油量Q與行駛時間t的函數(shù)關(guān)系式
(3)如果小汽車在行駛過程中耗油量速度不變,加油站距景點200km,車速80km/h,要到達目的地,油箱中的油是否夠用?請說明理由
【答案】(1)3;24;(2)Q=﹣10t+36(0≤t≤3);(3)油箱中的油是夠用的.
【解析】試題分析::(1)觀察圖中數(shù)據(jù)可知,行駛3小時后油箱剩油6L,加油加至30L;
(2)先根據(jù)圖中數(shù)據(jù)把每小時用油量求出來,即:(36-6)÷3=10L,再寫出函數(shù)關(guān)系式;
(3)先要求出從加油站到景點需行幾小時,然后再求需用多少油,便知是否夠用.
試題解析:(1)從圖中可知汽車行駛3h后加油,中途加油24L;
(2)根據(jù)分析可知Q=-10t+36(0≤t≤3);
(3)油箱中的油是夠用的.
∵200÷80=2.5(小時),需用油10×2.5=25L<30L,
∴油箱中的油是夠用的.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a>0)的頂點為P,其圖像與x軸有兩個交點A(﹣m,0),B(1,0),交y軸于點C(0,﹣3am+6a),以下說法:
①m=3;
②當∠APB=120°時,a= ;
③當∠APB=120°時,拋物線上存在點M(M與P不重合),使得△ABM是頂角為120°的等腰三角形;
④拋物線上存在點N,當△ABN為直角三角形時,有a≥
正確的是( )
A.①②
B.③④
C.①②③
D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,大樓外墻有高為AB的廣告牌,由距離大樓20米的點C(即CD=20米)觀察它的頂部A的仰角是55°,底部B的仰角是42°,求AB的高度.(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小河兩岸邊各有一棵樹,分別高30尺和20尺,兩樹的距離是50尺,每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時看見水面上游出一條魚,它們立刻飛去抓魚,速度相同,并且同時到達目標.則這條魚出現(xiàn)的地方離開比較高的樹的距離為___________尺.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知長方體的長、寬、高分別為30cm、20cm、10cm,一只螞蟻從A處出發(fā)到B處覓食,求它所走的最短路徑.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,AD=4cm,∠A=60°,BD⊥AD.一動點P從A出發(fā),以每秒1cm的速度沿A→B→C的路線勻速運動,過點P作直線PM,使PM⊥AD.
(1)當點P運動2秒時,設(shè)直線PM與AD相交于點E,求△APE的面積;
(2)當點P運動2秒時,另一動點Q也從A出發(fā)沿A→B的路線運動,且在AB上以每秒1cm的速度勻速運動,(當P、Q中的某一點到達終點,則兩點都停止運動.)過Q作直線QN,使QN∥PM,設(shè)點Q運動的時間為t秒(0≤t≤8),直線PM與QN截□ABCD所得圖形的面積為S(cm2).求S關(guān)于t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲口袋中裝有3個相同的小球,它們分別寫有數(shù)值﹣1,1,5;乙口袋中裝有3個相同的小球,它們分別寫有數(shù)值﹣4,2,3.現(xiàn)從甲口袋中隨機取一球,記它上面的數(shù)值為x,再從乙口袋中隨機取一球,記它上面的數(shù)值為y.設(shè)點A的坐標為(x,y),請用樹形圖或列表法,求點A落在第一象限的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com