【題目】如圖,在△ABC中,AC=BC,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,若AB=2,∠ACB=30°,則線段CD的長(zhǎng)度為______

【答案】2

【解析】

連接CE,如圖,利用旋轉(zhuǎn)的性質(zhì)得到AD=AB=2,AE=AC,∠CAE=60°,∠AED=ACB=30°,則可判斷△ACE為等邊三角形,從而得到∠AEC=60°,再判斷DE平分∠AEC,根據(jù)等腰三角形的性質(zhì)得到DE垂直平分AC,于是根據(jù)線段垂直平分線的性質(zhì)得DC=DA=2

解:連接CE,如圖,

∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,

AD=AB=2,AE=AC,∠CAE=60°,∠AED=ACB=30°,

∴△ACE為等邊三角形,

∴∠AEC=60°,

DE平分∠AEC

DE垂直平分AC,

DC=DA=2

故答案為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)yxx0)的圖象與反比例函數(shù)y的圖象交于點(diǎn)A,若點(diǎn)A繞點(diǎn)B0)順時(shí)針旋轉(zhuǎn)90°后,得到的點(diǎn)A'仍在y的圖象上,則點(diǎn)A的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小東設(shè)計(jì)的以線段AB為一條對(duì)角線作一個(gè)菱形的尺規(guī)作圖過程.

已知:線段AB

求作:菱形ACBD

作法:如圖,

以點(diǎn)A為圓心,以AB長(zhǎng)為半徑作⊙A

以點(diǎn) B為圓心,以AB長(zhǎng)為半徑作⊙B,

⊙A C,D兩點(diǎn);

連接AC,BCBD,AD

所以四邊形ACBD就是所求作的菱形.

根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);

2)完成下面的證明.

證明:點(diǎn)B,CD⊙A上,

∴AB=AC=AD( )(填推理的依據(jù)).

同理點(diǎn)A,CD⊙B上,

∴AB=BC=BD

= = =

四邊形ACBD是菱形. ( )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yx2+bx+cx軸負(fù)半軸交于點(diǎn)A,與x軸正半軸交于點(diǎn)B,與y軸交于點(diǎn)C

1)如圖1,若OB2OA2OC

求拋物線的解析式;

M是第一象限拋物線上一點(diǎn),若cosMAC,求M點(diǎn)坐標(biāo).

2)如圖2,直線EFx軸與拋物線相交于E、F兩點(diǎn),PEF下方拋物線上一點(diǎn),且Pm,﹣2).若∠EPF90°,則EF所在直線的縱坐標(biāo)是否為定值,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組對(duì)函數(shù)的圖象和性質(zhì)將進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整.

1)自變量的取值范圍是除0外的全體實(shí)數(shù),的幾組對(duì)應(yīng)值列表如下:

1

2

3

6

1

2

6

1

3

2

1

其中,_________

2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn)并畫出了函數(shù)圖象的一部分,請(qǐng)畫出該函數(shù)圖象的另一部分.

3)觀察函數(shù)圖象,寫出一條函數(shù)性質(zhì).

4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):

①函數(shù)圖象與軸交點(diǎn)情況是________,所以對(duì)應(yīng)方程的實(shí)數(shù)根的情況是________

②方程_______個(gè)實(shí)效根;

③關(guān)于的方程2個(gè)實(shí)數(shù)根,的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DAC上一點(diǎn),過B,C,D三點(diǎn)的OAB于點(diǎn)E,連接EDEC,點(diǎn)F是線段AE上的一點(diǎn),連接FD,其中∠FDE=∠DCE

1)求證:DFO的切線.

2)若DAC的中點(diǎn),∠A30°,BC4,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,EBC邊上一點(diǎn),FDE上一點(diǎn),若∠B=∠AFE,AB=AF

求證:(1△ADF≌△DEC.(2BE=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在中,,動(dòng)點(diǎn)點(diǎn)沿線段點(diǎn)運(yùn)動(dòng),以為斜邊在右側(cè)作等腰直角三角形的最小值為_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點(diǎn),對(duì)于四邊形EFGH的形狀,某班學(xué)生在一次數(shù)學(xué)活動(dòng)課中,通過動(dòng)手實(shí)踐,探索出如下結(jié)論,其中錯(cuò)誤的是(

A.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC=BD時(shí),四邊形EFGH為菱形

B.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且ACBD時(shí),四邊形EFGH為矩形

C.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH可以為平行四邊形

D.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH不可能為菱形

查看答案和解析>>

同步練習(xí)冊(cè)答案