已知拋物線y=ax2+bx經(jīng)過點A(-3,-3)和點P(t,0),且t≠0.
(1)若t=-4,求拋物線的解析式,并指出此時拋物線的開口方向;
(2)如圖,拋物線y=ax2+bx的對稱軸經(jīng)過點A,觀察圖象并回答:
y的最小值=______;
t的值=______;
當(dāng)x>-3時,y隨x的增大而______.

【答案】分析:(1)利用待定系數(shù)即可求得函數(shù)的解析式;
(2)根據(jù)函數(shù)的圖象即可寫出.
解答:解:(1)根據(jù)題意得:,
解得:
則拋物線的解析式是:y=x2+4x;

(2)根據(jù)圖象可以得到y(tǒng)的最小值是-3;
點P與原點關(guān)于x=-3對稱,則P的坐標(biāo)是(-6,0),故t=-6;
當(dāng)x>-3時,y隨x的增大而增大.
故答案是:-3,-6,增大.
點評:本題考查了用待定系數(shù)法求函數(shù)解析式的方法,同時還考查了方程組的解法等知識,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標(biāo)和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標(biāo)為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標(biāo)原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當(dāng)x≥1時y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案