【題目】某校數(shù)學(xué)課外小組,在坐標(biāo)紙上為某濕地公園的一塊空地設(shè)計(jì)植樹方案如下:第k棵樹種植在點(diǎn)Pkxk,yk)處,其中x11,y11,且k≥2時(shí),,[a]表示非負(fù)實(shí)數(shù)a的整數(shù)部分,例如[2.3]2,,[0.5]0.按此方案,第2019棵樹種植點(diǎn)的坐標(biāo)應(yīng)為(  )

A.(6,2020)B.(20195)C.(3,403)D.(404,4)

【答案】D

【解析】

根據(jù)已知分別求出1≤k≤5時(shí),P點(diǎn)坐標(biāo)為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當(dāng)6≤k≤10時(shí),P點(diǎn)坐標(biāo)為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通過觀察得到點(diǎn)的坐標(biāo)特點(diǎn),進(jìn)而求解.

解:由題可知1≤k≤5時(shí),P點(diǎn)坐標(biāo)為(1,1)、(1,2)、(1,3)、(1,4)、(15),

當(dāng)6≤k≤10時(shí),P點(diǎn)坐標(biāo)為(2,1)、(22)、(2,3)、(2,4)、(2,5),

……

通過以上數(shù)據(jù)可得,P點(diǎn)的縱坐標(biāo)5個(gè)一組循環(huán),

2019÷5403…4,

∴當(dāng)k2019時(shí),P點(diǎn)的縱坐標(biāo)是4,橫坐標(biāo)是403+1404,

P404,4),

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小東設(shè)計(jì)的作圓的一個(gè)內(nèi)接矩形,并使其對(duì)角線的夾角為60°”的尺規(guī)作圖過程

已知:⊙O

求作:矩形ABCD,使得矩形ABCD內(nèi)接于⊙O,且其對(duì)角線AC,BD的夾角為60°

作法:如圖

①作⊙O的直徑AC

②以點(diǎn)A為圓心,AO長為半徑畫弧,交直線AC上方的圓弧于點(diǎn)B;

③連接BO并延長交⊙O于點(diǎn)D;

所以四邊形ABCD就是所求作的矩形.

根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);

(2)完成下面的證明.

證明:∵點(diǎn)AC都在⊙O上,

OA=OC

同理OB=OD

∴四邊形ABCD是平行四邊形

AC是⊙O的直徑,

∴∠ABC=90° (填推理的依據(jù))

∴四邊形ABCD是矩形

AB= =BO,

∴四邊形ABCD四所求作的矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知將拋物線yx21沿x軸向上翻折與所得拋物線圍成一個(gè)封閉區(qū)域(包括邊界),在這個(gè)區(qū)域內(nèi)有5個(gè)整點(diǎn)(點(diǎn)M滿足橫、縱坐標(biāo)都為整數(shù),則把點(diǎn)M叫做“整點(diǎn)”),它們分別是(10),(﹣10),(0,0),(01),(0,﹣1).現(xiàn)將拋物線yax+12+2a0)沿x軸向下翻折,所得拋物線與原拋物線所圍成的封閉區(qū)域內(nèi)(包括邊界)恰有11個(gè)整點(diǎn),則a的取值范圍是( 。

A.1a<﹣B.a<﹣1C.a<﹣D.1a<﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC是⊙O的切線,連接AC與⊙O交于點(diǎn) D.取BC的中點(diǎn)E,連接DE,并連接OE交⊙O于點(diǎn)F.連接AFBC于點(diǎn)G,連接BDAG于點(diǎn)H

1)若EF1BE,求∠EOB的度數(shù);

2)求證:DE為⊙O的切線;

3)求證:點(diǎn)F為線段HG的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一塊長30cm,寬12cm的矩形鐵皮,

1)如圖1,在鐵皮的四角各切去一個(gè)同樣的正方形,然后將四周突出部分折起,就能制作成一個(gè)底面積為144cm2的無蓋方盒,如果設(shè)切去的正方形的邊長為xcm,則可列方程為   

2)由于實(shí)際需要,計(jì)劃制作一個(gè)有蓋的長方體盒子,為了合理使用材料,某學(xué)生設(shè)計(jì)了如圖2的裁剪方案,空白部分為裁剪下來的邊角料,其中左側(cè)兩個(gè)空白部分為正方形,問能否折出底面積為104cm2的有蓋盒子(盒蓋與盒底的大小形狀完全相同)?如果能,請(qǐng)求出盒子的體積;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以等腰ABC的一腰AC為直徑作⊙O,交底邊BC于點(diǎn)D,過點(diǎn)D作腰AB的垂線,垂足為E,交AC的延長線于點(diǎn)F

1)求證:EF是⊙O的切線;

2)證明:∠CAD=∠CDF

3)若∠F30°,AD,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2bxc上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y 的對(duì)應(yīng)值如表所示:

給出下列說法:①拋物線與y軸的交點(diǎn)為(0,6); ②拋物線的對(duì)稱軸是在y軸的右側(cè);③拋物線一定經(jīng)過點(diǎn)(3,0); ④在對(duì)稱軸左側(cè),yx增大而減。畯谋碇锌芍,下列說法正確的個(gè)數(shù)有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B0,4),C02).

1)將ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的A1B1C1,平移ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對(duì)應(yīng)的A2B2C2;

2)若將A1B1C1繞某一點(diǎn)旋轉(zhuǎn)可以得到A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),點(diǎn)C在第二象限,BCy軸交于點(diǎn)D(0,c),若y軸平分∠BAC,則點(diǎn)C的坐標(biāo)不能表示為(  )

A. (b+2a,2b) B. (﹣b﹣2c,2b)

C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)

查看答案和解析>>

同步練習(xí)冊(cè)答案