【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為-7,點(diǎn)B表示的數(shù)為5,點(diǎn)C到點(diǎn)A,點(diǎn)B的距離相等,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為(>0)秒
(1)點(diǎn)C表示的數(shù)是_________.
(2)求當(dāng)等于多少秒時(shí),點(diǎn)P到達(dá)點(diǎn)B處.
(3)點(diǎn)P表示的數(shù)是_________(用含有的代數(shù)式表示).
(4)求當(dāng)t等于多少秒時(shí),PC之間的距離為2個(gè)單位長(zhǎng)度(只列式,不計(jì)算).
【答案】(1)-1;(2)6(3)2t-7(4)2s或4s
【解析】
(1)根據(jù)線段中點(diǎn)坐標(biāo)公式可求點(diǎn)C表示的數(shù);
(2)根據(jù)時(shí)間=路程÷速度,可求t的值;
(3)根據(jù)兩點(diǎn)之間的距離公式可求點(diǎn)P表示的數(shù);
(4)分P在點(diǎn)C左邊和點(diǎn)C右邊兩種情況討論求解
解:(1)(-7+5)÷2,
=-2÷2,
=-1.
故點(diǎn)C表示的數(shù)是-1.
(2)[5-(-7)]÷2=6;
(3) 2t-7;
(4)因?yàn)?/span>PC之間的距離為2個(gè)單位長(zhǎng)度,
所以點(diǎn)P運(yùn)動(dòng)到-3或1,即-7+2t=-3或-7+2t=1,
即t=2 或t=4.
故答案為:(1)-1;(2)6;(3)2t-7;(4)2s或4s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AE、BF、DC是直線,B在直線AC上,E在直線DF上,∠1=∠2,∠A=∠F.
求證:∠C=∠D.
證明:因?yàn)椤?/span>1=∠2(已知),∠1=∠3( )
得∠2=∠3( )
所以AE//_______( )
得∠4=∠F( )
因?yàn)?/span>__________(已知)
得∠4=∠A
所以______//_______( )
所以∠C=∠D( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:,善于思考的小明進(jìn)行了以下探索:
設(shè)(其中均為整數(shù)),則有 .
∴.這樣小明就找到了一種把部分的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問題:
(1)當(dāng)均為正整數(shù)時(shí),若,用含m、n的式子分別表示,得 = ,= ;
(2)利用所探索的結(jié)論,找一組正整數(shù),填空: + =( + )2;
(3)若,且均為正整數(shù),求的值.
【答案】(1);;(2)4,2,1,1(答案不唯一);(3)=7或13
【解析】分析:(1)由a+b=(m+n)2,展開比較系數(shù)可得答案;
(2)取m=1,n=1,可得a和b的值,可得答案;
(3)由題意得m和n的方程,解方程可得m和n,可得a值.
詳解:(1)∵a+b=(m+n)2,
∴a+b=m2+3n2+2mn,
∴a=m2+3n2,b=2mn.
故答案為:m2+3n2,2mn.
(2)設(shè)m=1,n=1,
∴a=m2+3n2=4,b=2mn=2.
故答案為4、2、1、1.
(3)由題意,得:
a=m2+3n2,b=2mn
∵4=2mn,且m、n為正整數(shù),
∴m=2,n=1或者m=1,n=2,
∴a=22+3×12=7,或a=12+3×22=13.
點(diǎn)睛:本題主要考查二次根式的混合運(yùn)算,完全平方公式,解題的關(guān)鍵在于熟練運(yùn)算完全平方公式和二次根式的運(yùn)算法則.
【題型】解答題
【結(jié)束】
28
【題目】如圖1,已知點(diǎn)A(a,0),B(0,b),且a、b滿足,
□ABCD的邊AD與y軸交于點(diǎn)E,且E為AD中點(diǎn),雙曲線經(jīng)過(guò)C、D兩點(diǎn).
(1)若點(diǎn)D點(diǎn)縱坐標(biāo)為t,則C點(diǎn)縱坐標(biāo)為 (含t的代數(shù)式表示),k的值為 ;
(2)點(diǎn)P在雙曲線上,點(diǎn)Q在y軸上,若以點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo);
(3)以線段AB為對(duì)角線作正方形AFBH(如圖3),點(diǎn)T是邊AF上一動(dòng)點(diǎn),M是HT的中點(diǎn),MN⊥HT,交AB于N,連接FN,當(dāng)T在AF上運(yùn)動(dòng)時(shí),試判斷∠ATH與∠AFN之間的數(shù)量關(guān)系,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用錘子以均勻的力敲擊鐵釘入木板.隨著鐵釘?shù)纳钊耄F釘所受的阻力會(huì)越來(lái)越大,使得每次釘入木板的釘子的長(zhǎng)度后一次為前一次的k倍(0<k<1).已知一個(gè)釘子受擊3次后恰好全部進(jìn)入木板,且第一次受擊后進(jìn)入木板部分的鐵釘長(zhǎng)度是釘長(zhǎng)的 .設(shè)鐵釘?shù)拈L(zhǎng)度為1,那么符合這一事實(shí)的方程是( )
A.
(1+k)2=1
B.
k+ k2=1
C.
+ k+ k2=1
D.
+ (1+k)2=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BD相交于點(diǎn)N,連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,信豐縣某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖所示的兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形圓心角是 度;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生1200人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,于是我們說(shuō):“的整數(shù)部分為,小數(shù)部分則可記為”.則:
(1)的整數(shù)部分為________,小數(shù)部分則可記為________;
(2)已知的小數(shù)部分為,的小數(shù)部分為,那么的值是________;
(3)已知是的整數(shù)部分,是的小數(shù)部分,求的平方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E是AD上一點(diǎn),延長(zhǎng)CE到點(diǎn)F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點(diǎn)P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com