已知關(guān)于x的方程x2-kx+k-1=0.
(1)求證:無論k取什么實數(shù)值,這個方程總有實數(shù)根;
(2)當(dāng)k=3時,△ABC的每條邊長恰好都是方程x2-kx+k-1=0的根,求△ABC的周長.
(1)證明:△=k2-4k+4=(k-2)2,
∵(k-2)2≥0,即△≥0,
∴無論k取什么實數(shù)值,方程總有實數(shù)根;
(2)解:當(dāng)k=3時,方程變形為x2-3x+2=0,解得x1=2,x2=1,
△ABC的三邊為2、2、2或1、1、1或2、2、1,
所以△ABC的周長為6或3或5.
分析:(1)先計算△得到△=k2-4k+4=(k-2)2,根據(jù)非負(fù)數(shù)的性質(zhì)得到(k-2)2≥0,即△≥0,然后根據(jù)△的意義即可得到結(jié)論;
(2)把k=3代入方程得到x2-3x+2=0,利用因式分解法可解得x1=2,x2=1,由于△ABC的每條邊長恰好都是方程x2-kx+k-1=0的根,則△ABC的三邊為2、2、2或1、1、1或2、2、1,然后分別計算周長.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.也考查了解一元二次方程.