【題目】已知,ABC是等邊三角形,如圖①,點DE分別在射線BA、BC上,且AD=CE,求證:BDE是等邊三角形;

2)如圖②,點DBA邊上,點E在射線BC上,AD=CE,連接DEAC于點F,請問DFEF的數(shù)量關系是什么?并說明理由.

【答案】1)見解析;(2)DF=EF,理由見解析.

【解析】

1)利用有一個角是60度的等腰三角形是等邊三角形進行判定;

2)過點DDHBEAC于點H,證得DHFECFASA),可得出DF=EF.

1)證明:∵ABC是等邊三角形,

∴∠B =60°AB=BC,

AD=CE,

AB+AD=BC+CE,BD=BE,

BDE是等腰三角形,

又∵∠B =60°,

BDE是等邊三角形;

2DF=EF,理由是:

如圖②,過點DDHBEAC于點H,

ABC是等邊三角形,

∴∠A=B =ACB=60°,

DHBE,

∴∠ADH=B =60°,∠AHD=ACB =60°,

ADH是等邊三角形,

AD=DH,

AD=CE,

DH=CE,

DHBE,

∴∠HDF=E, DHF=FCE,

DHFECF中,

DHFECFASA

DF=EF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等邊三角形,是角平分線,過點,交邊的延長線于點,.

(1)求證:是等腰三角形;

(2)的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中,xy的部分對應值如下表:

x

﹣3

﹣2

﹣1

0

y

0

﹣3

﹣4

﹣3

下列結論:

①ac<0;

②當x>1時,yx的增大而增大;

③﹣4是方程ax2+(b﹣4)x+c=0的一個根;

④當﹣1<x<0時,ax2+(b﹣1)x+c+3>0.其中正確結論的個數(shù)為(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的南岸邊點A測得河的北岸邊點B在其北偏東45°方向,然后向西走60 m到達點C測得點B在點C的北偏東60°方向,如圖②.

(1)求∠CBA的度數(shù);

(2)求出這段河的寬(結果精確到1 m,參考數(shù)據(jù):≈1.41,≈1.73).

       

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ab,依次有3個三角形放置在上面,它們分別是等邊三角形、等腰直角三角形、含30°角的直角三角形,直接填寫出∠1、∠2、∠3 的度數(shù).

1= °;2= °;3= °.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個30°的角BAC與角MON,頂點A在射線ON上某處,現(xiàn)保持角MON不動,將角BAC繞點A以每秒15°的速度順時針旋轉(zhuǎn),邊AB、AC分別與邊OM交于點P、Q,當ACOM時,交點Q消失旋轉(zhuǎn)結束。設運動時間為t秒(t>0.

1)當t=2秒時,OP:PQ= ;

2)在運動的過程中,APQ能否成為等腰三角形?若能,請利用備用圖,直接寫出此時的運動時間;

3)在(2)中判斷OAQ的形狀,并選擇其中的一個說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°AB=3,AC=4,點DBC的中點,將ABD沿AD翻折得到AED,連CE,則線段CE的長等于(  )

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點,且經(jīng)過點,與軸分別交于兩點.

1)求直線和該拋物線的解析式;

2)如圖1,點是拋物線上的一個動點,且在直線的上方,過點軸的平行線與直線交于點,求的最大值;

3)如圖2,軸交軸于點,點是拋物線上之間的一個動點,直線分別交于、,當點運動時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,ABAC,過AB上一點DDEACBC于點E,以E為頂點,ED為一邊,作∠DEFA,另一邊EFAC于點F

1)求證:四邊形ADEF為平行四邊形;

2)當DAB中點時,四邊形ADEF的形狀為 (直接寫出結論);

3)延長圖1中的DE到點G,使EGDE,連接AEAG,FG,得到圖2.若ADAG,判斷四邊形AEGF的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案