【題目】如圖,兩個(gè)30°的角BAC與角MON,頂點(diǎn)A在射線ON上某處,現(xiàn)保持角MON不動(dòng),將角BAC繞點(diǎn)A以每秒15°的速度順時(shí)針旋轉(zhuǎn),邊AB、AC分別與邊OM交于點(diǎn)P、Q,當(dāng)AC∥OM時(shí),交點(diǎn)Q消失旋轉(zhuǎn)結(jié)束。設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)當(dāng)t=2秒時(shí),OP:PQ= ;
(2)在運(yùn)動(dòng)的過程中,△APQ能否成為等腰三角形?若能,請(qǐng)利用備用圖,直接寫出此時(shí)的運(yùn)動(dòng)時(shí)間;
(3)在(2)中判斷△OAQ的形狀,并選擇其中的一個(gè)說明理由.
【答案】(1)2:1;
(2)當(dāng)t=3s或6s時(shí),△APQ為等腰三角形;
(3)△OAQ為等腰三角形,理由見解析.
【解析】
(1)當(dāng)t=2秒時(shí),∠PAO=30°,∠PQA=90°,根據(jù)等角對(duì)等邊定理和30度角所對(duì)直角邊等于斜邊的一半可得出結(jié)論;
(2)先求出t的取值范圍,然后分三種情況討論,當(dāng)△APQ為等腰三角形時(shí)∠PAO的大小,并進(jìn)而得到t的值;
(3)由(2)得到t的值,代入求得△OAQ的內(nèi)角度數(shù),從而判斷△OAQ的形狀。
解:(1)如圖1,
當(dāng)t=2秒時(shí),∠PAO=30°,
∵∠MON=∠BAC=30°
∴∠PAO=∠MON, ∠PQA=90°,
∴OP=AP,PQ=AP,
∴OP:PQ= 2:1;
故答案為:2:1;
(2)當(dāng)AC∥OM時(shí),∠NAC=∠O=,
∴∠OAB=
∴t=
∴0<t<8,
分三種情況: AP=AQ 、AP=PQ和QP=QA,
①當(dāng)AP=AQ時(shí),
∠APQ=∠AQP=
∴∠PAO=∠APQ-∠O=
∴t=;
②當(dāng)AP=PQ時(shí),
∠APQ=
∴∠PAO=∠APQ-∠O=
∴t=;
③當(dāng)QP=QA時(shí),
∠APQ=∠PAQ=
∴∠PAO=∠APQ-∠O=
即t=0s(舍去)
綜上所述,當(dāng)t=3s或6s時(shí),△APQ為等腰三角形;
(3)當(dāng)t=3s或6s時(shí),△OAQ為等腰三角形,
理由是:
當(dāng)t=3s時(shí),∠OAP=45°,∠PAQ=30°,
∴∠OAQ=75°,
又∠AQP=75°,
∴OA=OQ,即△APQ為等腰三角形.
當(dāng)t=6s時(shí),∠OAP=90°,∠PAQ=30°,
∴∠OAQ=120°,
又∠AOQ=30°,
∴∠OQA=30°
∴OA=AQ,即△APQ為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x軸交于點(diǎn)M.
(1)求此拋物線的解析式和對(duì)稱軸;
(2)在此拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)連接AC,在直線AC下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4). 點(diǎn)從 出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向運(yùn)動(dòng);點(diǎn)從同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)作垂直軸于點(diǎn),連結(jié)AC交NP于Q,連結(jié)MQ.
【1】點(diǎn) (填M或N)能到達(dá)終點(diǎn);
【1】求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
【1】是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo),若不存在,
說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y=上,點(diǎn)B在雙曲線y=(k≠0)上,AB∥x軸,過點(diǎn)A作AD⊥x軸于D.連接OB,與AD相交于點(diǎn)C,若AC=2CD,則k的值為( )
A. 6 B. 9 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC是等邊三角形,如圖①,點(diǎn)D、E分別在射線BA、BC上,且AD=CE,求證:△BDE是等邊三角形;
(2)如圖②,點(diǎn)D在BA邊上,點(diǎn)E在射線BC上,AD=CE,連接DE交AC于點(diǎn)F,請(qǐng)問DF與EF的數(shù)量關(guān)系是什么?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=kx-1(x>0)的圖象交矩形OABC的邊AB于點(diǎn)D,交邊BC于點(diǎn)E,且BE=2EC.若四邊形ODBE的面積為6,則k=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】曲阜限制“三小車輛”出行后,為方便市民出行,準(zhǔn)備為、、、四個(gè)村建一個(gè)公交車站.
(1)請(qǐng)問:公交站建在何處才能使它到4個(gè)村的距離之和最小,請(qǐng)?jiān)趫D一中找出點(diǎn);
(2)請(qǐng)問:公交站建在何處才能使它到道路、、的距離相等,請(qǐng)?jiān)趫D二中找出點(diǎn)并加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是___________;
(2)問題解決: 如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;
(3)問題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,以C為頂點(diǎn)作∠ECF,使得角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,且EF=BE+DF,試探索∠ECF與∠A之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一列數(shù):1,-2,3,-4,5,-6,7…將這列數(shù)排成下列形式:
第1行 1
第2行。2 3
第3行 -4 5。6
第4行 7 -8 9。10
第5行 11。12 13 -14 15
……
按照上述規(guī)律排列下去,則第50行的最后一個(gè)數(shù)是___________,2019這個(gè)數(shù)在第___行,從左往右是第_____個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com