【題目】湖南廣益實(shí)驗(yàn)即將開展校園文化藝術(shù)節(jié)活動(dòng),為了合理編排節(jié)目,對(duì)學(xué)生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中信息,回答下列問題:
(1)本次共調(diào)查了__________名學(xué)生;
(2)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛小品的人數(shù)為__________人;
(3)九年一班和九年二班各有2名學(xué)生擅長(zhǎng)舞蹈,學(xué)校準(zhǔn)備從這4名學(xué)生中隨機(jī)抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來自同一個(gè)班級(jí)的概率是多少?
【答案】(1)50;(2)640;(3)
【解析】
(1)用喜愛相聲類的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);
(2)用乘以樣本中最喜愛小品類人數(shù)所占的百分比即可得解;
(3)畫樹狀圖表示出所有種等可能的結(jié)果數(shù),再找出抽取的名學(xué)生恰好來自同一班級(jí)的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1)
(2)
(3)設(shè)一班2名舞蹈學(xué)生為、
二班2名舞蹈學(xué)生為、,則有
∵通過觀察樹狀圖可知,共有種等可能的結(jié)果,抽取的名學(xué)生恰好來自同一班級(jí)的結(jié)果有種
∴名學(xué)生恰好來自同一班級(jí)的概率為.
故答案是:(1)(2)(3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=4,點(diǎn)A在⊙O上,∠AMN=30°,B為的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點(diǎn)E在⊙O上.
(1)求∠AED的度數(shù);
(2)若⊙O的半徑為2,則的長(zhǎng)為多少?
(3)連接OD,OE,當(dāng)∠DOE=90°時(shí),AE恰好是⊙O的內(nèi)接正n邊形的一邊,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CB⊥DB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=:3.若新坡角下需留3米寬的人行道,問離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,割線PCD交⊙O于C、D,∠PAE=∠PDA.
(1)求證:PA是⊙O的切線;
(2)若PA=6,CD=3PC,求PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形,例如△ABC中,三邊分別為a、b、c,若滿足b2=ac,則稱△ABC為比例三角形,其中b為比例中項(xiàng).
(1)已知△ABC是比例三角形,AB=2,BC=3,請(qǐng)直接寫出所有滿足條件的AC的長(zhǎng);
(2)如圖,在四邊形ABCD中,AD∥BC,對(duì)角線BD平分∠ABC,∠BAC=∠ADC.
①請(qǐng)直接寫出圖中的比例三角形;
②作AH⊥BD,當(dāng)∠ADC=90°時(shí),求的值;
(3)三邊長(zhǎng)分別為a、b、c的三角形是比例三角形,且b為比例中項(xiàng),已知拋物線y=ax2+bx+c與y軸交于點(diǎn)B,頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以OB為直徑的⊙M經(jīng)過點(diǎn)A,記△OAB的面積為S1,⊙M的面積為S2,試問S1:S2的值是否為定值?若是請(qǐng)求出定值,若不是請(qǐng)求出S1:S2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACE,△ACD均為直角三角形,∠ACE=90°,∠ADC=90°,AE與CD相交于點(diǎn)P,以CD為直徑的⊙O恰好經(jīng)過點(diǎn)E,并與AC,AE分別交于點(diǎn)B和點(diǎn)F.
(1)求證:∠ADF=∠EAC.
(2)若PC=PA,PF=1,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)涵洞的截面邊緣是拋物線形.現(xiàn)測(cè)得當(dāng)水面寬AB=1.6m時(shí),涵洞頂點(diǎn)與水面的距離是2.4m.這時(shí),離開水面1.5m處,涵洞的寬DE為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B是⊙O上兩點(diǎn),△OAB外角的平分線交⊙O于另一點(diǎn)C,CD⊥AB交AB的延長(zhǎng)線于D.
(1)求證:CD是⊙O的切線;
(2)E為的中點(diǎn),F為⊙O上一點(diǎn),EF交AB于G,若tan∠AFE=,BE=BG,EG=3,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com