【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB,坡面AC的傾斜角為45°.為了方便行人推車過(guò)天橋,市政部門(mén)決定降低坡度,使新坡面DC的坡度為i=3.若新坡角下需留3米寬的人行道,問(wèn)離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732

【答案】需要拆除.

【解析】試題分析:由題意得到△ABC為等腰直角三角形,求出AB的長(zhǎng),在Rt△BCD中,根據(jù)新坡面的坡度求出∠BDC=30°,得到DC的長(zhǎng),再利用勾股定理求出DB的長(zhǎng),由DB﹣AB求出AD的長(zhǎng),再比較AD+310的大小即可.

試題解析:需要拆除,理由為:

CBAB,CAB=45°,∴△ABC為等腰直角三角形,AB=BC=10米,在RtBCD中,新坡面DC的坡度為i=3,即CDB=30°,DC=2BC=20米,BD==米,AD=BD﹣AB=)米≈732米,3+732=103210,需要拆除.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來(lái)越美麗,小明家附近廣場(chǎng)中央新修了一個(gè)圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達(dá)到最高,水柱落地處離池中心米.

(1)請(qǐng)你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并求出水柱拋物線的函數(shù)解析式;

(2)求出水柱的最大高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABC=ACB,AD、BD、CD分別平分ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①ADBC;②∠ACB=2ADB;③∠ADC=90°﹣∠ABD;④∠BDC=BAC.其中正確的結(jié)論的有__________.(把正確結(jié)論的序號(hào)都寫(xiě)上去)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,老師介紹了利用尺規(guī)確定殘缺紙片圓心的方法.小華對(duì)數(shù)學(xué)老師說(shuō):我可以用拆疊紙片的方法確定圓心.小華的作法如下:

第一步:如圖1,將殘缺的紙片對(duì)折,使弧AB的端點(diǎn)A與端點(diǎn)B重合,得到圖2;

第二步:將圖2繼續(xù)對(duì)折,使弧CD的端點(diǎn)C與端點(diǎn)B重合,得到圖3;

第三步:將對(duì)折后的圖3打開(kāi)如圖4,兩條折痕所在直線的交點(diǎn)即為圓心O

老師肯定了他的作法.那么他確定圓心的依據(jù)是_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】證明:如果兩個(gè)三角形有兩個(gè)角及它們的夾邊的高分別相等,那么這兩個(gè)三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

16+(﹣)﹣2﹣(﹣1.5

210+[﹣(﹣1+1)]×6

3)﹣2÷×(2

4)﹣32|6|3×(﹣+(﹣22÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求若干個(gè)相同的不為零的有理數(shù)的除法運(yùn)算叫做除方.

如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 類比有理數(shù)的乘方,我們把 2÷2÷2 記作 2,讀作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)記作(-3),讀作“-3 的圈 4 次方”.

一般地,把(a≠0)記作,讀作“a的圈n次方”.

(1)直接寫(xiě)出計(jì)算結(jié)果 _____, _________ ___________,

(2)我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,

請(qǐng)嘗試將有理數(shù)的除方運(yùn)算轉(zhuǎn)化為乘方運(yùn)算,歸納如下一個(gè)非零有理數(shù)的圈 n 次方等于_____.

(3)計(jì)算 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,Aab),Bc,0)是x軸正半軸上一點(diǎn),ABO30°,若|2a|互為相反數(shù).

1)求c的值;

2)如圖2ACABx軸于C,以AC為邊的正方形ACDE的對(duì)角線ADx軸于F

求證:BE2OC;

BF2OF2m,OC2n,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)m為常數(shù)).

(1)試判斷該函數(shù)的圖象與x軸的公共點(diǎn)的個(gè)數(shù)

(2)求證:不論m為何值,該函數(shù)的圖象的頂點(diǎn)都在函數(shù)的圖象上;

(3)若直線y=x與二次函數(shù)圖象交于A、B兩點(diǎn),當(dāng)﹣4≤m≤2時(shí),求線段AB的最大值和最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案