【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣,0),點(diǎn)B(0,1)把△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得△A'B'O,點(diǎn)A,B旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A',B',記旋轉(zhuǎn)角為α(0°<α<360°).
(1)如圖①,當(dāng)點(diǎn)A′,B,B′共線(xiàn)時(shí),求AA′的長(zhǎng).
(2)如圖②,當(dāng)α=90°,求直線(xiàn)AB與A′B′的交點(diǎn)C的坐標(biāo);
(3)當(dāng)點(diǎn)A′在直線(xiàn)AB上時(shí),求BB′與OA′的交點(diǎn)D的坐標(biāo)(直接寫(xiě)出結(jié)果即可)
【答案】(1)AA′=;(2)(,);(3)(,).
【解析】
(1)如圖①,只要證明△AOA′是等邊三角形即可;
(2)如圖②,當(dāng)α=90°,點(diǎn)A′在y軸上,作CH⊥OA′于H.解直角三角形求出BH,CH即可解決問(wèn)題;
(3)如圖③,設(shè)A′B′交x軸于點(diǎn)K.首先證明A′B′⊥x軸,求出OK,A′K即可解決問(wèn)題;
(1)如圖①,
∵A(﹣,0),B(0,1),
∴OA=,OB=1,
∴tan∠BAO=,
∴∠BAO=30°,∠ABO=60°,
∵△A′OB′是由△AOB旋轉(zhuǎn)得到,
∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,
∴∠OBB′=60°,
∴∠BOB′=α=∠AOA′=60°,
∴△AOA′是等邊三角形,
∴AA′=OA=.
(2)如圖②,當(dāng)α=90°,點(diǎn)A′在y軸上,作CH⊥OA′于H.
∵∠A′B′O=60°,∠CAB′=30°,
∴∠ACB′=90°,
∵A′B=OA′﹣OB=﹣1,∠BA′C=30°,
∴BC=A′B=,
∵∠HBC=60°,
∴BH=BC=,CH=BH=,
∴OH=1+BH=,
∴點(diǎn)C的坐標(biāo)(,).
(3)如圖③中,設(shè)A′B′交x軸于點(diǎn)K.
當(dāng)A′在AB上時(shí),∵OA=OA′,
∴∠OAA′=∠AA′O=30°,
∵∠OA′B′=30°,
∴∠AA′K=60°,
∴∠AKA′=90°,
∵OA′=,∠OA′K=30°,
∴OK=OA′=,A′K=OK=,
∴A′(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的個(gè)數(shù)是( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線(xiàn)段AB的中點(diǎn),點(diǎn)D在線(xiàn)段CB上.
(1)圖中共有 條線(xiàn)段.
(2)圖中AD=AC+CD,BC=AB﹣AC,類(lèi)似地,請(qǐng)你再寫(xiě)出兩個(gè)有關(guān)線(xiàn)段的和與差的關(guān)系式:
① ;② .
(3)若AB=8,DB=1.5,求線(xiàn)段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖象(折線(xiàn)OEFPMN)描述了某汽車(chē)在行駛過(guò)程中速度與時(shí)間的函數(shù)關(guān)系,下列說(shuō)法中錯(cuò)誤的是( )
A. 第3分時(shí)汽車(chē)的速度是40千米/時(shí)
B. 第12分時(shí)汽車(chē)的速度是0千米/時(shí)
C. 從第3分到第6分,汽車(chē)行駛了120千米
D. 從第9分到第12分,汽車(chē)的速度從60千米/時(shí)減少到0千米/時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線(xiàn)交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.
(1)求證:四邊形ABEF為菱形;
(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A、B、C三點(diǎn)在格點(diǎn)上.
(1)作出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出點(diǎn)C1的坐標(biāo) ;
(2)在(1)的條件下,連接CC1交AB于點(diǎn)D,請(qǐng)標(biāo)出點(diǎn)D,并直接寫(xiě)出CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:AE是△ABC的外角∠CAD的平分線(xiàn).
(1)若AE∥BC,如圖1,試說(shuō)明∠B=∠C;
(2)若AE交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,如圖2,直接寫(xiě)出反應(yīng)∠B、∠ACB、∠AEC之間關(guān)系的等式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】光合作用是指綠色植物通過(guò)葉綠體,利用光能,把二氧化碳和水轉(zhuǎn)化成儲(chǔ)存能量的有機(jī)物,并釋放出氧氣的過(guò)程.如圖是夏季的白天7時(shí)~18時(shí)的一般的綠色植物的光合作用強(qiáng)度與時(shí)間之間的關(guān)系的曲線(xiàn),分析圖象回答問(wèn)題:
(1)大約幾時(shí)的光合作用最強(qiáng)?大約幾時(shí)的光合作用最弱?
(2)說(shuō)一說(shuō)綠色植物光合作用的強(qiáng)度從7時(shí)到18時(shí)是怎樣變化的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上高,若AD=16,CD=12,BD=9.
(1)求△ABC的周長(zhǎng);
(2)判斷△ABC的形狀并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com