【題目】著名數(shù)學(xué)教育家波利亞曾說(shuō):“對(duì)一個(gè)數(shù)學(xué)問(wèn)題,改變它的形式,變換它的結(jié)構(gòu),直到發(fā)現(xiàn)有價(jià)值的東西,這是數(shù)學(xué)解題的一個(gè)重要原則.”
閱讀下列兩則材料,回答問(wèn)題
材料一:平方運(yùn)算和開(kāi)方運(yùn)算是互逆運(yùn)算,如:a2±2ab+b2=(a±b)2,那么=|a±b|,那么如何將雙重二次根式(a>0,b>0,a±2>0)化簡(jiǎn)呢?如能找到兩個(gè)數(shù)m,n(m>0,n>0),使得(2+()2=a即m+n=a,且使即mn=b,那么a±2=()2+()2±2=(2
∴==|,雙重二次根式得以化簡(jiǎn).
例如化簡(jiǎn):.∵3=1+2且2=1×2,∴3+2=()2+()2+2,
∴==1+.
材料二:在直角坐標(biāo)系xoy中,對(duì)于點(diǎn)P(x,y)和Q(x,y′)出如下定義:若y′=,則稱(chēng)點(diǎn)Q為點(diǎn)P的“橫負(fù)縱變點(diǎn)”例如,點(diǎn)(3,2)的“橫負(fù)縱變點(diǎn)”為(3,2),點(diǎn)(﹣2,5)的“橫負(fù)縱變點(diǎn)”為(﹣2,﹣5)
問(wèn)題:
(1)請(qǐng)直接寫(xiě)出點(diǎn)(﹣3,﹣2)的“橫負(fù)縱變點(diǎn)”為 ;化簡(jiǎn)= ;
(2)點(diǎn)M為一次函數(shù)y=﹣x+1圖象上的點(diǎn),M′為點(diǎn)M的橫負(fù)縱變點(diǎn),已知N(1,1),若M′N=,求點(diǎn)M的坐標(biāo);
(3)已知b為常數(shù)且1≤b≤2,點(diǎn)P在函數(shù)y=﹣x2+16(+)(﹣7≤x≤a)的圖象上,其“橫負(fù)縱變點(diǎn)”的縱坐標(biāo)y′的取值范圍是﹣32<y′≤32,若a為偶數(shù),求a的值.
【答案】(1)(﹣3,2);﹣;(2)當(dāng)a≥0時(shí),M'(3,﹣2);當(dāng)a<0時(shí),M'(﹣1,﹣2);(3)a=4或a=6
【解析】
(1)﹣3<0,得到(﹣3,﹣2)的“橫負(fù)縱變點(diǎn)”為(﹣3,2);==﹣;
(2)設(shè)點(diǎn)M(a,1﹣a),當(dāng)a≥0時(shí),M'(a,1﹣a),M'(3,﹣2);當(dāng)a<0時(shí),M'(a,a﹣1),M'(﹣1,﹣2);
(3)=+1+1﹣=2,令y'=,當(dāng)﹣7≤x<0時(shí),﹣32<y'≤17,當(dāng)x≥0時(shí),y'≤32,即可求出a.
解:(1)∵﹣3<0,根據(jù)“橫負(fù)縱變點(diǎn)”的定義,
∴(﹣3,﹣2)的“橫負(fù)縱變點(diǎn)”為(﹣3,2);
==﹣;
故答案為:(﹣3,2);﹣;
(2)設(shè)點(diǎn)M(a,1﹣a),
當(dāng)a≥0時(shí),M'(a,1﹣a),
∵N(1,1),M′N=,
∴(1﹣a)2+a2=13,
∴a=3或a=﹣2(舍),
∴M'(3,﹣2);
當(dāng)a<0時(shí),M'(a,a﹣1),
∵N(1,1),M′N=,
∴(1﹣a)2+(2﹣a)2=13,
∴a=﹣1或a=4(舍),
∴M'(﹣1,﹣2);
(3)∵1≤b≤2,∴0≤b﹣1≤1,
∵=+1+1﹣=2,
∴y=﹣x2+32,
∴y'=,
當(dāng)﹣7≤x<0時(shí),﹣32<y'≤17;
當(dāng)x≥0時(shí),y'≤32;
令﹣x2+32=17,解得x1=或x2=﹣(舍);
令﹣x2+32=﹣32,解得x1=8或x2=﹣8(舍);
∴≤a<8,
∵a是偶數(shù),
∴a=4或a=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在射線BC上(與B、C兩點(diǎn)不重合),以AD為邊作正方形ADEF,使點(diǎn)E與點(diǎn)B在直線AD的異側(cè),射線BA與射線CF相交于點(diǎn)G.
(1)若點(diǎn)D在線段BC上,如圖1.
①依題意補(bǔ)全圖1;
②判斷BC與CG的數(shù)量關(guān)系與位置關(guān)系,并加以證明;
(2)若點(diǎn)D在線段BC的延長(zhǎng)線上,且G為CF中點(diǎn),連接GE,AB=,則GE的長(zhǎng)為_____,并簡(jiǎn)述求GE長(zhǎng)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線,直線,當(dāng)任取一值時(shí),對(duì)應(yīng)的函數(shù)值分別 為,若,取中的較小值記為;若,記,例如:當(dāng)時(shí),,此時(shí),下列判斷:
①當(dāng)時(shí),;
②當(dāng)時(shí),值越大,值越小;
③使得大于2的值不存在;
④使得的值是或.
其中正確的是_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形OABC中,OA=4,OC=2,以點(diǎn)O為坐標(biāo)原點(diǎn),OA所在的直線為x軸,建立直角坐標(biāo)系.
(1)將矩形OABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至矩形DEFC,如圖1,DE經(jīng)過(guò)點(diǎn)B,求旋轉(zhuǎn)角的大小和點(diǎn)D,F的坐標(biāo);
(2)將圖1中矩形DEFC沿直線BC向左平移,如圖2,平移速度是每秒1個(gè)單位長(zhǎng)度.
①經(jīng)過(guò)幾秒,直線EF經(jīng)過(guò)點(diǎn)B;
②設(shè)兩矩形重疊部分的面積為S,運(yùn)動(dòng)時(shí)間為t,寫(xiě)出重疊部分面積S與時(shí)間t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中AB=AC,BD平分∠ABC交AC于點(diǎn)D,DE平分∠ADB交AB于點(diǎn)E,CF∥AB交ED的延長(zhǎng)線于F,若∠A=52°,求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富校園文化生活,促進(jìn)學(xué)生積極參加體育運(yùn)動(dòng),某校準(zhǔn)備成立校排球隊(duì),現(xiàn)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種型號(hào)的排球,已知一個(gè)甲種型號(hào)排球的價(jià)格與一個(gè)乙種型號(hào)排球的價(jià)格之和為140元;如果購(gòu)買(mǎi)6個(gè)甲種型號(hào)排球和5個(gè)乙種型號(hào)排球,一共需花費(fèi)780元.
(1)求每個(gè)甲種型號(hào)排球和每個(gè)乙種型號(hào)排球的價(jià)格分別是多少元?
(2)學(xué)校計(jì)劃購(gòu)買(mǎi)甲、乙兩種型號(hào)的排球共26個(gè),其中甲種型號(hào)排球的個(gè)數(shù)多于乙種型號(hào)排球,并且學(xué)校購(gòu)買(mǎi)甲、乙兩種型號(hào)排球的預(yù)算資金不超過(guò)1900元,求該學(xué)校共有幾種購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=mx+2mx-3m(m≠0)的頂點(diǎn)為H,與軸交于A、B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè)),點(diǎn)H、B關(guān)于直線l:對(duì)稱(chēng),過(guò)點(diǎn)B作直線BK∥AH交直線l于K點(diǎn).
(1)求A、B兩點(diǎn)坐標(biāo),并證明點(diǎn)A在直線I上。
(2)求此拋物線的解析式;
(3)將此拋物線向上平移,當(dāng)拋物線經(jīng)過(guò)K點(diǎn)時(shí),設(shè)頂點(diǎn)為N,求出NK的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過(guò)程與方法,探究函數(shù)的圖象與性質(zhì).因?yàn)?/span>,即,所以我們對(duì)比函數(shù)來(lái)探究.
列表:
描點(diǎn):在平面直角坐標(biāo)系中,以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示:
(1)請(qǐng)補(bǔ)全函數(shù)圖象;
(2)觀察圖象并分析表格,回答下列問(wèn)題:
①當(dāng)時(shí),隨的增大而_________;(填“增大”或“減小”)
②的圖象是由的圖象向________平移________個(gè)單位而得到;
③圖象關(guān)于點(diǎn)_________中心對(duì)稱(chēng).(填點(diǎn)的坐標(biāo))
(3)結(jié)合函數(shù)圖象,當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線直線一個(gè)交點(diǎn)另一個(gè)交點(diǎn)在軸上,點(diǎn)是線段上異于的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸的垂線,交拋物線于點(diǎn).
(1)求拋物線的解析式;
(2)是否存在這樣的點(diǎn),使線段長(zhǎng)度最大?若存在,求出最大值及此時(shí)點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由;
(3)求當(dāng)為直角三角形時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com