【題目】如圖,在正方形網(wǎng)格上有6個斜三角形:①△ABC;②△CDB;③△DEB;④△FBG;⑤HGF;⑥△EKF.請你寫出與△ABC相似的三角形,并寫出簡要的證明.
【答案】△DEB∽△FBG∽△HGF∽△ABC.證明見解析.
【解析】
設(shè)網(wǎng)格的邊長為1,根據(jù)勾股定理得到各個三角形的邊長,再根據(jù)兩個三角形三條邊對應(yīng)成比例,兩個三角形相似,據(jù)此即可解答.
解:△ABC∽△DEB∽△FBG∽△HGF,證明如下:
設(shè)網(wǎng)格的邊長為1,根據(jù)勾股定理得到:
△ABC的三邊(邊長從小到大)之比AB:AC:BC=1::;
②△CDB的三邊(邊長從小到大)之比CD:CB:BD=1::≠1::,故不相似于△ABC;
③△DEB的三邊(邊長從小到大)之比DE:BD:BE=2::=1::,故相似于△ABC;
④△FBG的三邊(邊長從小到大)之比FB:FG:BG=::=1::,故相似于△ABC;
⑤HGF的三邊(邊長從小到大)之比HG:FH:FG=:2:=1::,故相似于△ABC;
⑥△EKF的三邊(邊長從小到大)之比EH:KH:KE=1:1:≠1::,故不相似于△ABC;
因此,△ABC∽△DEB∽△FBG∽△HGF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想利用所學(xué)知識測量一公園門前熱氣球直徑的大小,如圖,當(dāng)熱氣球升到某一位置時,小明在點(diǎn)A處測得熱氣球底部點(diǎn)C、中部點(diǎn)D的仰角分別為50°和60°,已知點(diǎn)O為熱氣球中心,EA⊥AB,OB⊥AB,OB⊥OD,點(diǎn)C在OB上,AB=30m,且點(diǎn)E、A、B、O、D在同一平面內(nèi),根據(jù)以上提供的信息,求熱氣球的直徑約為多少米?(精確到0.1m)
(參考數(shù)據(jù):sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=x+2的圖象分別與坐標(biāo)軸相交于A、B兩點(diǎn)(如圖所示),與反比例函數(shù)(x>0)的圖象相交于C點(diǎn).
(1)寫出A、B兩點(diǎn)的坐標(biāo);
(2)作CD⊥x軸,垂足為D,如果OB是△ACD的中位線,求反比例函數(shù)(x>0)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四個命題,則一定正確命題的序號是( )
①x=1是二次方程ax2+bx+c=0的一個實數(shù)根;
②二次函數(shù)y=ax2+bx+c的開口向下;
③二次函數(shù)y=ax2+bx+c的對稱軸在y軸的左側(cè);
④不等式4a+2b+c>0一定成立.
A. ①② B. ①③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)C坐標(biāo)為(-1,0),.一次函數(shù)的圖象經(jīng)過點(diǎn)B、C,反比例函數(shù)的圖象經(jīng)過點(diǎn)B.
(1)一次函數(shù)關(guān)系式為、反比例函數(shù)的關(guān)系式為____;
(2)當(dāng)x<0時,的解集為_____;
(3)在軸上找一點(diǎn)M,使得AM+BM的值最小,并求M的坐標(biāo)和AM+BM的最小值.
(4)若x軸上有兩點(diǎn)E、F,點(diǎn)E在點(diǎn)F的左邊,且EF=1.當(dāng)四邊形ABEF周長最小時,請直接寫出點(diǎn)E的橫坐標(biāo)為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在內(nèi)角不確定的△ABC中,AB=AC,點(diǎn)E、F分別在AB、AC上,EF∥BC,平行移動EF,如果梯形EBCF有內(nèi)切圓.
當(dāng)=時,sinB=;
當(dāng)=時,sinB=(提示:=);當(dāng)=時,sinB=.
(1)請你根據(jù)以上所反映的規(guī)律,填空:當(dāng)=時,sinB的值等于______;
(2)當(dāng)=時(n是大于1的自然數(shù)),請用含n的代數(shù)式表示sinB=______,并畫出圖形、寫出已知、求證和證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標(biāo)系中,一次函數(shù)的圖象l與y軸交于點(diǎn)A(0 , 2),與一次函數(shù)y=x﹣3的圖象l交于點(diǎn)E(m ,﹣5).
(1)m=__________;
(2)直線l與x軸交于點(diǎn)B,直線l與y軸交于點(diǎn)C,求四邊形OBEC的面積;
(3)如圖2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的邊PQ在x軸上平移,若矩形MNPQ與直線l或l有交點(diǎn),直接寫出a的取值范圍_____________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小山頂上有一信號塔AB,山坡BC的傾角為30°,現(xiàn)為了測量塔高AB,測量人員選擇山腳C處為一測量點(diǎn),測得塔頂仰角為45°,然后順山坡向上行走100米到達(dá)E處,再測得塔頂仰角為60°,求塔高AB.(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,且不與A、B兩點(diǎn)重合,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,連接AC,BC,若∠ABC=53°,則∠D的度數(shù)是( 。
A. 16°B. 18°C. 26.5°D. 37.5°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com