【題目】ABC繞點B逆時針旋轉(zhuǎn)α得到DBE,DE的延長線與AC相交于點F,連接DA、BF.

(1)如圖1,若ABC=α=60°,BF=AF.

求證:DABC;猜想線段DF、AF的數(shù)量關(guān)系,并證明你的猜想;

(2)如圖2,若ABC<α,BF=mAF(m為常數(shù)),求的值(用含m、α的式子表示).

【答案】解:(1)證明:由旋轉(zhuǎn)性質(zhì)可知,DBE=ABC=60°,BD=AB。

∴△ABD為等邊三角形。∴∠DAB=60°。∴∠DAB=ABC。

DABC。

猜想:DF=2AF。證明如下:

如答圖1所示,在DF上截取DG=AF,連接BG,

由旋轉(zhuǎn)性質(zhì)可知,DB=AB,BDG=BAF,

DBG與ABF中,DB=AB,BDG=BAF,DG=AF,

∴△DBG≌△ABF(SAS)。BG=BF,DBG=ABF。

∵∠DBG+GBE=α=60°,∴∠GBE+ABF=60°,即GBF=α=60°。

BG=BF,∴△BGF為等邊三角形。GF=BF。

BF=AF,GF=AF。DF=DG+GF=AF+AF=2AF。

(2)如答圖2所示,在DF上截取DG=AF,連接BG,

由(1),同理可證明DBG≌△ABF,BG=BF,GBF=α。

過點B作BNGF于點N,

BG=BF,點N為GF中點,FBN=

在RtBFN中,NF=BFsinFBN=BFsin=mAFsin

GF=2NF=2mAFsinDF=DG+GF=AF+2mAFsin。

【解析】

試題分析:(1)由旋轉(zhuǎn)性質(zhì)證明ABD為等邊三角形,則DAB=ABC=60°,所以DABC。

(2)如答圖1所示,作輔助線(在DF上截取DG=AF,連接BG),構(gòu)造全等三角形DBG≌△ABF,得到BG=BF,DBG=ABF;進而證明BGF為等邊三角形,則GF=BF=AF;從而DF=2AF

類似,作輔助線,構(gòu)造全等三角形DBG≌△ABF,得到BG=BF,DBG=ABF,由此可知BGF為頂角為α的等腰三角形,解直角三角形求出GF的長度,從而得到DF長度,問題得解 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)甲,乙,丙三位學(xué)生進入了校園朗誦比賽冠軍、亞軍和季軍的決賽,他們將通過抽簽來決定比賽的出場順序.

1)求甲第一個出場的概率;

2)求甲比乙先出場的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?

小敏在思考問題,有如下思路:連接AC.

結(jié)合小敏的思路作答

(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題方法解決一下問題;

(2)如圖2,在(1)的條件下,若連接AC,BD.

①當(dāng)AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結(jié)論并證明;

②當(dāng)AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市自開展學(xué)習(xí)新思想,做好接班人主題閱讀活動以來,受到各校的廣泛關(guān)注和同學(xué)們的積極響應(yīng),某校為了解全校學(xué)生主題閱讀的情況,隨機抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計圖表.

某校抽查的學(xué)生文章閱讀的篇數(shù)統(tǒng)計表

文章閱讀的篇數(shù)()

3

4

5

6

7及以上

人數(shù)()

20

28

m

16

12

請根據(jù)統(tǒng)計圖表中的信息,解答下列問題:

(1)求被抽查的學(xué)生人數(shù)和的值;

(2)求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);

(3)若該校共有800名學(xué)生,根據(jù)抽查結(jié)果估計該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,轉(zhuǎn)盤被等分成六個扇形,并在上面依次寫上數(shù)字1、2、3、45、6.

1)若自由轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)它停止轉(zhuǎn)動時,指針指向奇數(shù)區(qū)的概率是多少?

2)若自由轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)它停止轉(zhuǎn)動時,指針指向的數(shù)小于或等于4的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件中不能判定AB∥CD的是( 。

A. ∠3=∠4 B. ∠1=∠5 C. ∠4+∠5=180° D. ∠3+∠5=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知任意三角形ABC,

(1)如圖1,過點CDE∥AB,求證:∠DCA=∠A;

(2)如圖1,求證:三角形ABC的三個內(nèi)角(即∠A、∠B、∠ACB)之和等于180°;

(3)如圖2,求證:∠AGF=∠AEF+∠F;

(4)如圖3,AB∥CD,∠CDE=119°,GF∠DEB的平分線EF于點F,∠AGF=150°,求∠F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 a,bc 分別是ABC 的三邊長.

1)分解因式:acbc= ,a2+2abb2=

2)若 acbc=﹣a2+2abb2,試判斷ABC 的形狀;并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點AC的坐標分別為(-4,5),(-13).

1)請在網(wǎng)格平面內(nèi)作出平面直角坐標系;

2)將ABC平移至DEF,使得A、BC的對應(yīng)點依次是D、EF,已知D23),請在網(wǎng)格中作出DEF;

3)若Qa,b)是DEF內(nèi)一點,則ABC內(nèi)點Q的對應(yīng)點點P的坐標是 (用a、b表示)

查看答案和解析>>

同步練習(xí)冊答案