【題目】如圖所示,在△ABC中,AB=AC,以AB為直徑作⊙O交于BC于D,DE⊥AC于E.
求證:DE是⊙O的切線.

【答案】證明:連接OD,∵以AB為直徑作⊙O交于BC于D,
∴∠ADB=90°,
∵AB=AC,
∴BD=DC,
∵AO=BO,
∴DO是△ABC的中位線,
∴DO∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切線.

【解析】直接利用圓周角定理進(jìn)而得出∠ADB=90°,再利用等腰三角形的性質(zhì)結(jié)合三角形中位線定理得出OD⊥DE,即可得出答案.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和切線的判定定理的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角);切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)在寬20m,長(zhǎng)32m的矩形地面上修筑同樣寬的人行道(圖中陰影部分),余下的部分種上草坪.要使草坪的面積為540m2 , 求道路的寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

15x(2x23x4);

2201722018×2016;

3;

4(ab)(ab)(ab)22a2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,用長(zhǎng)為20的鐵絲焊接成一個(gè)長(zhǎng)方形,設(shè)長(zhǎng)方形的一邊為x,面積為y,隨著x的變化,y的值也隨之變化.

(1)寫(xiě)出yx之間的關(guān)系式,并指出在這個(gè)變化中,哪個(gè)是自變量?哪個(gè)是因變量?

(2)用表格表示當(dāng)x1變化到9時(shí)(每次增加1)y的相應(yīng)值;

x

1

2

3

4

5

6

7

8

9

y

(3)當(dāng)x為何值時(shí),y的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一根20m長(zhǎng)的繩子圍成一個(gè)面積為24m2矩形,則矩形的長(zhǎng)與寬分別是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=(x321y軸交于點(diǎn)C,則點(diǎn)C的坐標(biāo)為( 。

A.36B.0,8

C.0,﹣1D.4,0)或(2,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程x26x40配方后可變形為( 。

A.x3213B.x323C.x+3213D.x+323

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列性質(zhì)中,菱形具有但矩形不一定具有的是( )
A.對(duì)邊相等
B.對(duì)邊平行
C.對(duì)角相等
D.對(duì)角線互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果點(diǎn)P(ab,ab)在第二象限,那么點(diǎn)Q(a,-b)在第(  )象限.

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案