【題目】下列幾何圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( )
A.等腰三角形B.等邊三角形C.菱形D.正五邊形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】遵義市某中學(xué)為了搞好“創(chuàng)建全國(guó)文明城市”的宣傳活動(dòng),對(duì)本校部分學(xué)生(隨機(jī)抽查)進(jìn)行了一次相關(guān)知識(shí)了解程度的調(diào)查測(cè)試(成績(jī)分為A、B、C、D、E五個(gè)組,x表示測(cè)試成績(jī)).通過(guò)對(duì)測(cè)試成績(jī)的分析,得到如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息解答以下問(wèn)題:
(1)參加調(diào)查測(cè)試的學(xué)生為多少人?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)本次調(diào)查測(cè)試成績(jī)中的中位數(shù)落在哪組內(nèi)?
(4)若測(cè)試成績(jī)?cè)?/span>80分以上(含80分)為優(yōu)秀,該中學(xué)共有學(xué)生2600人,請(qǐng)你根據(jù)樣本數(shù)據(jù)估計(jì)全校學(xué)生測(cè)試成績(jī)?yōu)閮?yōu)秀的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(4,0),B(0,4),C(6,6).
(1)求拋物線的表達(dá)式;
(2)證明:四邊形AOBC的兩條對(duì)角線互相垂直;
(3)在四邊形AOBC的內(nèi)部能否截出面積最大的DEFG?(頂點(diǎn)D,E,F,G分別在線段AO,OB,BC,CA上,且不與四邊形AOBC的頂點(diǎn)重合)若能,求出DEFG的最大面積,并求出此時(shí)點(diǎn)D的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校足球興趣小組的五名同學(xué)在一次射門(mén)訓(xùn)練中,射進(jìn)球門(mén)的次數(shù)分別為:6,7,7,8,9.這組數(shù)據(jù)的眾數(shù)為( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在13×13的網(wǎng)格圖中,已知△ABC和點(diǎn)M(1,2).
(1)以點(diǎn)M為位似中心,畫(huà)出△ABC的位似圖形△A′B′C′,其中△A′B′C′與△ABC的位似比為2;
(2)寫(xiě)出△A′B′C′的各頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展“愛(ài)我海珠,創(chuàng)衛(wèi)同行”的活動(dòng),倡議學(xué)生利用雙休日在海珠濕地公園參加義務(wù)勞動(dòng),為了解同學(xué)們勞動(dòng)情況,學(xué)校隨機(jī)調(diào)查了部分同學(xué)的勞動(dòng)時(shí)間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息解答下列問(wèn)題:
(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)抽查的學(xué)生勞動(dòng)時(shí)間的眾數(shù)為 , 中位數(shù)為 .
(3)已知全校學(xué)生人數(shù)為1200人,請(qǐng)你估算該校學(xué)生參加義務(wù)勞動(dòng)1小時(shí)的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的外接圓⊙O,那么點(diǎn)O是△ABC的( )
A.三條中線交點(diǎn)B.三條高的交點(diǎn)
C.三條邊的垂直平分線的交點(diǎn)D.三條角平分線交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BC于點(diǎn)F,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)H,點(diǎn)D為OE的延長(zhǎng)線上一點(diǎn),且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的直徑為5,sinA=,求BH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.
(1)求證:AD=AE;
(2)若AD=8,DC=4,求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com