精英家教網 > 初中數學 > 題目詳情

【題目】老師在黑板上書寫了一個正確的演算過程,隨后用手掌捂住了一個二次三項式,形式如下:

﹣3x=x2﹣5x+1

(1)求所捂的二次三項式;

(2)若x=+1,求所捂二次三項式的值;

(3)如果 +1的整數部分為a,則a2=   

【答案】(1)x2﹣2x+1;(2)6;(3)9.

【解析】

(1)根據題意列出算式,再求出即可;

(2)把x=+1代入,即可求出答案;

(3)先估算出的范圍,再求出+1的范圍,最后求出a即可.

解:(1)由已知得:x2﹣5x+1+3x=x2﹣2x+1,

即所捂的二次三項式是x2﹣2x+1;

(2)當x=+1時,

x2﹣2x+1

=(x﹣1)2

=(+1﹣1)2

=(2

=6;

即當x=+1時,所捂二次三項式的值是6;

(3)2<<3,

3<+1<4,

a=3,

a2=32=9

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算下列各題
(1)計算: +( -1)+( 0
(2)化簡:(1+a)(1﹣a)+a(a﹣3)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣ x+4與x軸、y軸分別交于點A、B,點C從點B出發(fā),以每秒5個單位長度的速度向點A勻速運動;同時點D從點O出發(fā),以每秒4個單位長度的速度向點B勻速運動,到達終點后運動立即停止.連接CD,取CD的中點E,過點E作EF⊥CD,與折線DO﹣OA﹣AC交于點F,設運動時間為t秒.

(1)點C的坐標為(用含t的代數式表示);
(2)求證:點E到x軸的距離為定值;
(3)連接DF、CF,當△CDF是以CD為斜邊的等腰直角三角形時,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,過原點O及點A(0,2)、C(6,0)作矩形OABC,∠AOC的平分線交AB于點D.點P從點O出發(fā),以每秒 個單位長度的速度沿射線OD方向移動;同時點Q從點O出發(fā),以每秒2個單位長度的速度沿x軸正方向移動.設移動時間為t秒.

(1)當點P移動到點D時,求出此時t的值;
(2)當t為何值時,△PQB為直角三角形;
(3)已知過O、P、Q三點的拋物線解析式為y=﹣ (x﹣t)2+t(t>0).問是否存在某一時刻t,將△PQB繞某點旋轉180°后,三個對應頂點恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,E、F是平行四邊形ABCD對角線AC上兩點,AE=CF

證明(1△ABE≌△CDF;

2BE∥DF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,AOB為等邊三角形,B(2,0),直線l:y=kx+b經過點B,點Cx軸正半軸上的一動點,以線段AC為邊在第一象限作等邊ACD.

(1)直接寫出點A的坐標:A(   ,   ),當直線l經過點A時,求直線BA的表達式.

(2)當直線l經過點D時,直線與y軸相交于點F,隨著點C的變化,點F的位置是否發(fā)生變化?若沒有變化,求出此時點F的坐標.;若有變化,請說明理由.

(3)當直線與線段OA相交與點E時,如果直線lAOB的面積分為1:2兩部分,求出此時點E的坐標.

(4)若點C的坐標為(4,0)時,直線l與線段AD有交點,請直接寫出此時k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AC=BC,在ABC外側作直線CP,點A關于直線CP的對稱點為D,連接AD,BD,其中BD交直線CP于點E.

(1)如圖1,ACP=15°.

①依題意補全圖形;

②求∠CBD的度數;

(2)如圖2,若45°<ACP<90°,直接用等式表示線段AC,DE,BE之間的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB=5,BC=3,AC=4,以點C為圓心的圓與AB相切,則⊙C的半徑為(
A.2.3
B.2.4
C.2.5
D.2.6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有公路l1同側、l2異側的兩個城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號發(fā)射塔,按照設計要求,發(fā)射塔到兩個城鎮(zhèn)AB的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應修建在什么位置?請用尺規(guī)作圖找出所有符合條件的點,注明點C的位置.(保留作圖痕跡,不要求寫出畫法)

查看答案和解析>>

同步練習冊答案