【題目】已知四邊形ABCD內(nèi)接于⊙O,∠DAB=90°
(1)如圖①,若∠ACB=60°,AB=4,求⊙O的直徑;
(2)如圖②,若AD≠AB,點(diǎn)C為弧DB的中點(diǎn)且AD=m,AB=n,求AC的長(zhǎng).
【答案】(1)8;(2)m+n
【解析】
(1)由圓周角定理可得∠ACB=∠ADB=60°,由三角函數(shù)可求BD的長(zhǎng),即可求⊙O的直徑;
(2)由題意可得DB=CD,通過(guò)證明△DEC∽△DAB,可得,可得DE=m,EC=n,即可求得AC=AE+EC=m+n.
解:(1)如圖,連接BD,
∵∠DAB=90°
∴BD是直徑,
∵∠DAB=90°,∠ACB=∠ADB=60°,AB=4,
∴sin∠ADB=
∴DB==8
∴⊙O的直徑為8
(2)如圖,連接BD,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E,
∵∠DAB=90°
∴BD是直徑,
∴∠BCD=90°
∵點(diǎn)C為弧DB的中點(diǎn)
∴∠DAC=∠CAB=45°
∴CD=BC,
∴DB=CD
∵∠DCA=∠ABD,∠DEC=∠DAB=90°
∴△DEC∽△DAB
∴
∴=
∴DE=m,EC=n,
∵∠DAC=45°,DE⊥AC
∴AE=DE=m
∴AC=AE+EC=m+n
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)直接寫出點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊△OA1B1,頂點(diǎn)A1在雙曲線y=(x>0)上,點(diǎn)B1的坐標(biāo)為(2,0).過(guò)B1作B1A2∥OA1交雙曲線于點(diǎn)A2,過(guò)A2作A2B2∥A1B1交x軸于點(diǎn)B2,得到第二個(gè)等邊△B1A2B2;過(guò)B2作B2A3∥B1A2交雙曲線于點(diǎn)A3,過(guò)A3作A3B3∥A2B2交x軸于點(diǎn)B3,得到第三個(gè)等邊△B2A3B3;以此類推,…,則點(diǎn)B6的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在陽(yáng)光下,一名同學(xué)測(cè)得一根長(zhǎng)為1米的垂直地面的竹竿的影長(zhǎng)為0.6米,同時(shí)另一名同學(xué)測(cè)量樹(shù)的高度時(shí),發(fā)現(xiàn)樹(shù)的影子不全落在地面上,有一部分落在教學(xué)樓的第一級(jí)臺(tái)階上,測(cè)得落在教學(xué)樓第一級(jí)臺(tái)階上的影子長(zhǎng)為0.2米,一級(jí)臺(tái)階高為0.3米,如圖所示,若此時(shí)落在地面上的影長(zhǎng)為4.42米,則樹(shù)高為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤(rùn)最大,最大利潤(rùn)多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤(rùn),每星期至少要銷售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,⊙O是△ABC的外接圓,點(diǎn)D是上一點(diǎn),過(guò)點(diǎn)C作⊙O的切線PC,直線PC交BA的延長(zhǎng)線于點(diǎn)P,交BD的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠PCA=∠PBC;
(2)若PC=8,PA=4,∠ECD=∠PCA,以點(diǎn)C為圓心,半徑為5作⊙C,試判斷⊙C與直線BD的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)觀察發(fā)現(xiàn);如圖1,在中,,點(diǎn)在邊上,過(guò)作交于,.填空:
①與是否相似? (直接回答)______;
②_______; .
(2)拓展探究:將繞頂點(diǎn)旋轉(zhuǎn)到圖2所示的位置,猜想與是否相似?若不相似,說(shuō)明理由;若相似,請(qǐng)證明.
(3)遷移應(yīng)用:將繞頂點(diǎn)旋轉(zhuǎn)到點(diǎn)在同一條直線上時(shí),直接寫出線段的長(zhǎng)是 .
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與軸相交于點(diǎn),(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),直線經(jīng)過(guò)點(diǎn),.
(1)求直線的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在甲乙兩個(gè)不透明的口袋中,分別有大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上分別標(biāo)有數(shù)字1,2,3,4,乙口袋中的小球上分別標(biāo)有數(shù)字2,3,4,先從甲袋中任意摸出一個(gè)小球,記下數(shù)字為m,再?gòu)囊掖忻鲆粋(gè)小球,記下數(shù)字為n.
(1)請(qǐng)用列表或畫樹(shù)狀圖的方法表示出所有(m,n)可能的結(jié)果;
(2)若m,n都是方程x2﹣5x+6=0的解時(shí),則小明獲勝;若m,n都不是方程x2﹣5x+6=0的解時(shí),則小利獲勝,問(wèn)他們兩人誰(shuí)獲勝的概率大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com