【題目】如圖,已知等邊△OA1B1,頂點A1在雙曲線y=(x>0)上,點B1的坐標為(2,0).過B1作B1A2∥OA1交雙曲線于點A2,過A2作A2B2∥A1B1交x軸于點B2,得到第二個等邊△B1A2B2;過B2作B2A3∥B1A2交雙曲線于點A3,過A3作A3B3∥A2B2交x軸于點B3,得到第三個等邊△B2A3B3;以此類推,…,則點B6的坐標為_____.
【答案】(2,0).
【解析】根據(jù)等邊三角形的性質以及反比例函數(shù)圖象上點的坐標特征分別求出B2、B3、B4的坐標,得出規(guī)律,進而求出點B6的坐標.
如圖,作A2C⊥x軸于點C,設B1C=a,則A2C=a,
OC=OB1+B1C=2+a,A2(2+a,a).
∵點A2在雙曲線y=(x>0)上,
∴(2+a)a=,
解得a=﹣1,或a=﹣﹣1(舍去),
∴OB2=OB1+2B1C=2+2﹣2=2,
∴點B2的坐標為(2,0);
作A3D⊥x軸于點D,設B2D=b,則A3D=b,
OD=OB2+B2D=2+b,A2(2+b,b).
∵點A3在雙曲線y=(x>0)上,
∴(2+b)b=,
解得b=﹣+,或b=﹣
∴OB3=OB2+2B2D=2﹣2+2=2,
∴點B3的坐標為(2,0);
同理可得點B4的坐標為(2,0)即(4,0);
…,
∴點Bn的坐標為(2,0),
∴點B6的坐標為(2,0),
故答案為:(2,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,四邊形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)求證:BD⊥CB;
(2)求四邊形 ABCD 的面積;
(3)如圖 2,以 A 為坐標原點,以 AB、AD所在直線為 x軸、y軸建立直角坐標系,
點P在y軸上,若 S△PBD=S四邊形ABCD,求 P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課堂上,老師提出問題:如圖,如何在該圖形中數(shù)出黑色正方形的個數(shù),以下是兩位同學的做法:
(1)甲同學的做法為:
當時,黑色正方形的個數(shù)共有
當時,黑色正方形的個數(shù)共有
當時,黑色正方形的個數(shù)共有
……則在第個圖形中,黑色正方形的個數(shù)共有 (無需化簡)
(2)乙同學的做法為:
當時,黑色正方形的個數(shù)共有
當時,黑色正方形的個數(shù)共有
當時,黑色正方形的個數(shù)共有
……則在第個圖形中,黑色正方形的個數(shù)共有 (無需化簡)
(3)數(shù)學老師及時肯定了兩位同學的做法,從而可以得到等式
(4)請利用學習過的知識驗證(3)問中的等式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,∠BAD+∠BCD=180°, AC平分∠BAD,過點C作CE⊥AD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長是____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1.在△ABC中,∠ACB=90°,點P為△ABC內(nèi)一點.
(1)連接PB、PC,將△BCP沿射線CA方向平移,得到△DAE,點B、C、P的對應點分別為點D、A、E,連接CE.
①依題意,請在圖2中補全圖形;
②如果BP⊥CE,AB+BP=9,CE=,求AB的長.
(2)如圖3,以點A為旋轉中心,將△ABP順時針旋轉60°得到△AMN,連接PA、PB、PC,當AC=4,AB=8時,根據(jù)此圖求PA+PB+PC的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司購買了一批A、B型芯片,其中A型芯片的單價比B型芯片的單價少9元,已知該公司用3120元購買A型芯片的條數(shù)與用4200元購買B型芯片的條數(shù)相等.
(1)求該公司購買的A、B型芯片的單價各是多少元?
(2)若兩種芯片共購買了200條,且購買的總費用為6280元,求購買了多少條A型芯片?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中,
(1)請寫出△ABC各點的坐標.
(2)求出△ABC的面積.
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A′B′C′,在圖中畫出△ABC變化位置。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“數(shù)形結合"是一種重要的數(shù)學思想,觀察下面的圖形和算式.
解答下列問題:
(1)試猜想1+3+5+7+9+…+19=______=( );
(2)試猜想,當n是正整數(shù)時,1+3+5+7+9+…+(2n-1)= ;
(3)請用(2)中得到的規(guī)律計算:19+21+23+25+27+…+99.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了落實黨的“精準扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運肥料的費用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運肥料的費用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設從A城運往C鄉(xiāng)肥料x噸,總運費為y元,求出最少總運費.
(3)由于更換車型,使A城運往C鄉(xiāng)的運費每噸減少a(0<a<6)元,這時怎樣調運才能使總運費最少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com