【題目】端午節(jié)那天,小賢回家看到桌上有一盤粽子,其中有豆沙粽、肉粽各1個,蜜棗粽2個,這些粽子除餡外無其他差別.

1)小賢隨機地從盤中取出一個粽子,取出的是肉粽的概率是多少?

2)小賢隨機地從盤中取出兩個粽子,試用畫樹狀圖或列表的方法表示所有可能的結果,并求出小賢取出蜜棗粽的概率.

【答案】(1);(2)

【解析】

1)直接利用概率公式求出取出的是肉粽的概率;
2)直接列舉出所有的可能,進而利用概率公式求出答案.

1P(任取1個,取到肉粽)=

2)列表得

豆沙粽

肉粽

蜜棗棕1

蜜棗棕2

豆沙粽

豆沙粽,肉粽

豆沙粽,蜜棗棕1

豆沙粽,蜜棗棕2

肉粽

肉粽,豆沙粽

肉粽,蜜棗棕1

肉粽,蜜棗棕2

蜜棗棕1

蜜棗棕1,豆沙粽

蜜棗棕1,肉粽

蜜棗棕1,蜜棗棕2

蜜棗棕2

蜜棗棕2,豆沙粽

蜜棗棕2,肉粽

蜜棗棕2,蜜棗棕1

所以共有12種結果,每種結果發(fā)生的可能性都相等,取到蜜棗棕有10種結果,

P(取到蜜棗棕)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,0),其部分圖象如圖所示,下列結論:①拋物線過原點;②4a+b+c=0;a﹣b+c<0;④拋物線的頂點坐標為(2,b);⑤當x<2時,yx增大而增大.其中結論正確的是(  )

A.①②③B.①②④C.①④⑤D.③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)的圖象過點M(﹣2,),頂點坐標為N(﹣1),且與x軸交于AB兩點,與y軸交于C點.

1)求拋物線的解析式;

2)點P為直線y=﹣1上的動點,Q是拋物線線上的動點,若以AC,PQ為頂點的四邊形是平行四邊形,求點P的坐標;

3)在直線AC上是否存在一點Q,使QBM的周長最小?若存在,求出Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A在線段BG上,ABCDDEFG都是正方形,面積分別為711,則△CDE的面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以邊為直徑的⊙經(jīng)過點,是⊙上一點,連結于點,且,.

(1)試判斷與⊙的位置關系,并說明理由;

(2)若點是弧的中點,已知,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過坐標原點,與x軸交于點A﹣4,0).

1)求二次函數(shù)的解析式;

2)在拋物線上存在點P,滿足SAOP=8,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ly=-x,點A1的坐標為(3,0). 過點A1x軸的垂線交直線l于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸負半軸于點A2,再過點A2x軸的垂線交直線l于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸負半軸于點A3,按此做法進行下去,點A2 017的坐標為 ( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線:y=-x(x-2)(0≤x≤2)記為C1 ,它與x軸交于兩點O,A;將C1繞點A旋轉(zhuǎn)180°得到C2 , x軸于A1;將C2繞點A1旋轉(zhuǎn)180°得到C3x軸于點A2.....如此進行下去,直至得到C2018 , 若點P(4035,m)在第2018段拋物線上,則m的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店經(jīng)過市場調(diào)查,整理出某種商品在第x(x90)天的售價與銷量的相關信息如右表.已知該商品的進價為每件30元,設銷售該商品的每天利潤為y元.

時間x()

1x<50

50x90

售價(元件)

x+40

90

每天銷量()

200-2x

(1)求出yx的函數(shù)關系式;

(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習冊答案