【題目】如圖,在矩形ABCD中,點E在邊CD上,將該矩形沿AE折疊,使點D落在邊BC上的點F處,過點F作分、FG∥CD,交AE于點G連接DG.
(1)求證:四邊形DEFG為菱形;
(2)若CD=8,CF=4,求的值.
【答案】
(1)
證明:由折疊的性質(zhì)可知:DG=FG,ED=EF,∠1=∠2,
∵FG∥CD,
∴∠2=∠3,
∴FG=FE,
∴DG=GF=EF=DE,
∴四邊形DEFG為菱形;
(2)
解:設(shè)DE=x,根據(jù)折疊的性質(zhì),EF=DE=x,EC=8﹣x,
在Rt△EFC中,F(xiàn)C2+EC2=EF2,
即42+(8﹣x)2=x2,
解得:x=5,CE=8﹣x=3,
∴=.
【解析】(1)根據(jù)折疊的性質(zhì),易知DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,易證FG=FE,故由四邊相等證明四邊形DEFG為菱形;
(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,從而求出的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標原點,拋物線y1=ax2+bx+c(a≠0)與x軸相交于點A(x1 , 0),B(x2 , 0),與y軸交于點C,且O,C兩點間的距離為3,x1x2<0,|x1|+|x2|=4,點A,C在直線y2=﹣3x+t上.
(1)求點C的坐標
(2)當(dāng)y1隨著x的增大而增大時,求自變量x的取值范圍;
(3)將拋物線y1向左平移n(n>0)個單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個單位,當(dāng)平移后的直線與P有公共點時,求2n2﹣5n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,點C在y軸的正半軸上,且OA=OC,則( 。
A.ac+1=b
B.ab+1=c
C.bc+1=a
D.以上都不是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC+BC=8,點O是斜邊AB上一點,以O(shè)為圓心的⊙O分別與AC,BC相切于點D,E.
(1)當(dāng)AC=2時,求⊙O的半徑;
(2)設(shè)AC=x,⊙O的半徑為y,求y與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚“東亞文化”,某單位開展了“東亞文化之都”演講比賽,在安排1位女選手和3位男選手的出場順序時,采用隨機抽簽方式.
(1)請直接寫出第一位出場是女選手的概率;
(2)請用畫樹狀圖或列表的方法表示第一、二位出場選手的所有等可能結(jié)果,并求出他們都是男選手的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O,E是邊AD的中點.若AC=10,DC=,則BO= ,∠EBD的大小約為 度 分.(參考數(shù)據(jù):tan26°34′≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,三角形的三個頂點均落在格點上.
(1)以三角形的其中兩邊為邊畫一個平行四邊形,并在頂點處標上字母A,B,C,D
(2)證明四邊形ABCD是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玉米種子的價格為a元/千克,如果一次購買2千克以上的種子,超過2千克部分的種子價格打8折.下表是購買量x(千克)、付款金額y(元)部分對應(yīng)的值,請你結(jié)合表格:
購買量x(千克) | 1.5 | 2 | 2.5 | 3 |
付款金額y(元) | 7.5 | 10 | 12 | b |
(1)寫出a、b的值,a= b= ;
(2)求出當(dāng)x>2時,y關(guān)于x的函數(shù)關(guān)系式;
(3)甲農(nóng)戶將18.8元錢全部用于購買該玉米種子,計算他的購買量.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com