【題目】閱讀以下內(nèi)容并回答問題:
如圖1,在平面直角坐標系xOy中,有一個△OEF,要求在△OEF內(nèi)作一個內(nèi)接正方形ABCD,使正方形A,B兩個頂點在△OEF的OE邊上,另兩個頂點C,D分別在EF和OF兩條邊上.
小麗感到要使四邊形的四個頂點同時滿足上述條件有些困難,但可以先讓四邊形的三個頂點滿足條件,于是她先畫了一個有三個頂點在三角形邊上的正方形(如圖2).接著她又在△OEF內(nèi)畫了一個這樣的正方形(如圖3).她發(fā)現(xiàn)如果再多畫一些這樣的正方形,就能發(fā)現(xiàn)這些點C位置的排列圖形,根據(jù)這個圖形就能畫出滿足條件的正方形了.
(1)請你也實驗一下,再多畫幾個這樣的正方形,猜想小麗發(fā)現(xiàn)這些點C排列的圖形是 ;
(2)請你參考上述思路,繼續(xù)解決問題:如果E,F兩點的坐標分別為E(6,0),F(4,3).
①當A1的坐標是(1,0)時,則C1的坐標是 ;
②當A2的坐標是(2,0)時,則C2的坐標是 ;
③結(jié)合(1)中猜想,求出正方形ABCD的頂點D的坐標,在圖3中畫出滿足條件的正方形ABCD.
【答案】(1)一條線段;(2)①(,);②(,);D點坐標為(,2),③見解析.
【解析】
(1)通過畫圖,可直接得出結(jié)論;
(2)先確定出直線OF的解析式,
①將x=1代入直線OF解析式求出y,即可得出結(jié)論;
②將x=2代入直線OF解析式求出y,即可得出結(jié)論;
③先求出直線C1C2的表達式為y=x和直線EF的表達式為y=﹣+9,進而求出C點坐標為(,2),即可得出結(jié)論.
解:(1)通過畫圖,猜想小麗發(fā)現(xiàn)這些點C排列的圖形是一條線段;
故答案為:一條線段;
(2)∵F(4,3).
∴直線OF的表達式是y=x,
①∵四邊形A1B1C1D1是正方形,
∴A1D1=A1B1,
把x=1代入直線y=x中,得y=,
∴OB1=OA1+A1B1=1+=,
∴C1的坐標是 (,),
故答案為:(,);
②∵四邊形A2B2C2D2是正方形,
∴A2D2=A2B2,
把x=2代入直線y=x中,得y=,
∴OB2=OA2+A2B2=2+=,
∴C2的坐標是 (,),
故答案為:(,);
③設過C1,C2兩點的一次函數(shù)表達式是y=kx+b(k≠0).
代入C1,C2兩點得,
解得,
∴直線C1C2的表達式為y=x,
設過E(6,0),F(4,3)兩點的一次函數(shù)表達式是y=k'x+b'(k'≠0).
代入E,F兩點得
解得,
所以直線EF的表達式為y=﹣x+9
直線EF:y=﹣x+9與直線C1C2:y=x的交點坐標為C.
聯(lián)立直線EF和直線C1C2解析式成方程組并求解得:x=,y=2.
∴C點坐標為(,2).
把y=2代入y=x,解得x=,
∴D點坐標為(,2)
所畫四邊形ABCD如圖3所示,
科目:初中數(shù)學 來源: 題型:
【題目】用尺規(guī)在一個平行四邊形內(nèi)作菱形,下列作法中錯誤的是( )
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x2經(jīng)過平移得到拋物線y=ax2+bx,其對稱軸與兩段拋物線所圍成的陰影部分的面積為,則a、b的值分別為( 。
A. , B. ,﹣ C. ,﹣ D. ﹣,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是中國古代數(shù)學專著,在數(shù)學上有其獨到的成就,不僅最早提到了分數(shù)問題,也首先記錄了“盈不足”等問題.如有一道闡述“盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價各幾何?譯文為:現(xiàn)有若干人合伙出錢買雞,如果每人出9文錢,就會多11文錢;如果每人出6文錢,又會缺16文錢.問買雞的人數(shù)、雞的價格各是多少?請解答上述問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:
① (﹣21)+(﹣13)﹣(﹣25)﹣(+28)
② ﹣22﹣6÷(﹣2)×
③先化簡再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中 a=﹣1,b=﹣2.
(2)解下列方程
①x=1-(3 x-1)
②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角三角形ABC的腰長為2,直角頂點A在直線l:y=2x+2上移動,且斜邊BC∥x軸,當△ABC在直線l上移動時,BC的中點D滿足的函數(shù)關系式為( )
A. y=2x B. y=2x+1 C. y=2x+2﹣ D. y=2x﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司在兩地分別庫存有挖掘機16臺和12臺,現(xiàn)在運往甲、乙兩地支援建設,其中甲地需要15臺,乙地需要13臺.從地運一臺到甲、乙兩地的費用分別是500元和400元;從地運一臺到甲、乙兩地費用分別是300元和600元,設從地運往甲地臺挖掘機.
(1)請補全下表,并求出運這批挖掘機的總費用是多少?
甲 | 乙 | 總計 | |
臺 | ____________臺 | 16臺 | |
_______________臺 | ____________臺 | 12臺 | |
總計 | 15臺 | 13臺 | 28臺 |
(2)當從地運往甲地5臺挖掘機時,運這批挖掘機的總費用是多少?
(3)怎樣安排運輸方案,可使運這批挖掘機的總費用最少,最少費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B處的仰角為30,看這棟高樓底部C處的俯角為60,若熱氣球與高樓的水平距離為90 m,則這棟高樓有多高?(結(jié)果保留整數(shù),≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
若A,B,C為數(shù)軸上三點且點C在A,B之間,若點C到A的距離是點C到B的距離的3倍,我們就稱點C是(A,B)的好點.
例如,如圖1,點A表示的數(shù)為-2,點B表示的數(shù)為2.表示1的點C到A的距離是3,到B的距離是1,那么點C是(A,B)的好點;又如,表示-1的點D到A的距離是1,到B的距離是3,那么點D就不是(A,B)的好點,但點D是(B,A)的好點.
知識運用:
(1)若M、N為數(shù)軸上兩點,點M所表示的數(shù)為-6,點N所表示的數(shù)為2.
數(shù) 所表示的點是(M,N)的好點;
數(shù) 所表示的點是(N,M)的好點;
(2)若點A表示的數(shù)為a,點B表示的數(shù)為b,點B在點A的右邊,且點B在A, C之間,點B是(C,A)的好點,求點C所表示的數(shù)(用含a、b的代數(shù)式表示);
(3)若A、B為數(shù)軸上兩點,點A所表示的數(shù)為-33,點B所表示的數(shù)為27,現(xiàn)有一只電子螞蟻P從點A出發(fā),以每秒6個單位的速度向右運動,運動時間為t秒.如果P,A,B中恰有一個點為其余兩點的好點,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com