【題目】如圖,拋物線交軸于兩點(diǎn),與軸交于點(diǎn),連接.點(diǎn)是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為.
(1)求此拋物線的表達(dá)式;
(2)過點(diǎn)作軸,垂足為點(diǎn),交于點(diǎn).試探究點(diǎn)P在運(yùn)動(dòng)過程中,是否存在這樣的點(diǎn),使得以為頂點(diǎn)的三角形是等腰三角形.若存在,請求出此時(shí)點(diǎn)的坐標(biāo),若不存在,請說明理由;
(3)過點(diǎn)作,垂足為點(diǎn).請用含的代數(shù)式表示線段的長,并求出當(dāng)為何值時(shí)有最大值,最大值是多少?
【答案】(1) ;(2) 存在,或;;(3) 當(dāng)時(shí),的最大值為:.
【解析】
(1)由二次函數(shù)交點(diǎn)式表達(dá)式,即可求解;
(2)分三種情況,分別求解即可;
(3)由即可求解.
解:(1)由二次函數(shù)交點(diǎn)式表達(dá)式得:,
即:,解得:,
則拋物線的表達(dá)式為;
(2)存在,理由:
點(diǎn)的坐標(biāo)分別為,
則,
將點(diǎn)的坐標(biāo)代入一次函數(shù)表達(dá)式:并解得:…①,
同理可得直線AC的表達(dá)式為:,
設(shè)直線的中點(diǎn)為,過點(diǎn)與垂直直線的表達(dá)式中的值為,
同理可得過點(diǎn)與直線垂直直線的表達(dá)式為:…②,
①當(dāng)時(shí),如圖1,
則,
設(shè):,則,
由勾股定理得:,解得:或4(舍去4),
故點(diǎn);
②當(dāng)時(shí),如圖1,
,則,
則,
故點(diǎn);
③當(dāng)時(shí),
聯(lián)立①②并解得:(舍去);
故點(diǎn)Q的坐標(biāo)為:或;
(3)設(shè)點(diǎn),則點(diǎn),
∵,
∴,
,
∵,
∴有最大值,
當(dāng)時(shí),的最大值為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線AM上有一點(diǎn)B,AB=6.點(diǎn)C是射線AM上異于B的一點(diǎn),過C作CD⊥AM,且CD=AC.過D點(diǎn)作DE⊥AD,交射線AM于E. 在射線CD取點(diǎn)F,使得CF=CB,連接AF并延長,交DE于點(diǎn)G.設(shè)AC=3x.
(1) 當(dāng)C在B點(diǎn)右側(cè)時(shí),求AD、DF的長.(用關(guān)于x的代數(shù)式表示)
(2)當(dāng)x為何值時(shí),△AFD是等腰三角形.
(3)若將△DFG沿FG翻折,恰使點(diǎn)D對應(yīng)點(diǎn)落在射線AM上,連接,.此時(shí)x的值為 (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)如圖1,在和中,,,,連接交于點(diǎn).填空:①的值為______;②的度數(shù)為______.
(2)類比探究如圖2,在和中,,,連接交的延長線于點(diǎn).請判斷的值及的度數(shù),并說明理由;
(3)拓展延伸在(2)的條件下,將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),所在直線交于點(diǎn),若,,請直接寫出當(dāng)點(diǎn)與點(diǎn)在同一條直線上時(shí)的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點(diǎn)O.E為邊AB上一點(diǎn),且BE = 2AE.設(shè),.
(1)填空:向量 ;
(2)如果點(diǎn)F是線段OC的中點(diǎn),那么向量 ,并在圖中畫出向量在向量和方向上的分向量.
注:本題結(jié)果用向量的式子表示.畫圖不要求寫作法,但要指出所作圖中表示結(jié)論的向量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),在反比例函數(shù)的圖象上運(yùn)動(dòng),且始終保持線段的長度不變.為線段的中點(diǎn),連接.則線段長度的最小值是_____(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市居民用水實(shí)行以戶為單位的三級(jí)階梯收費(fèi)辦法:
第一級(jí):居民每戶每月用水噸以內(nèi)含噸,每噸收水費(fèi)元;
第二級(jí):居民每戶每月用水超過噸但不超過噸,未超過的部分按照第一級(jí)標(biāo)準(zhǔn)收費(fèi),超過部分每噸收水費(fèi)元;
第三級(jí):居民每戶每月用水超過噸,未超過噸的部分按照第一、二級(jí)標(biāo)準(zhǔn)收費(fèi),超過部分每噸收水費(fèi)元;
設(shè)一戶居民月用水噸,應(yīng)繳水費(fèi)元,與之間的函數(shù)關(guān)系如圖所示,
(Ⅰ)根據(jù)圖象直接作答:___________,_______________,_______________;
(Ⅱ)求當(dāng)時(shí),與之間的函數(shù)關(guān)系式;
(Ⅲ)把上述水費(fèi)階梯收費(fèi)辦法稱為方案①,假設(shè)還存在方案②;居民每戶月用水一律按照每噸元的標(biāo)準(zhǔn)繳費(fèi).當(dāng)居民用戶月用水超過噸時(shí),請你根據(jù)居民每戶月用水量的大小設(shè)計(jì)出對居民繳費(fèi)最實(shí)惠的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、F分別是BC、AC邊的中點(diǎn),連接DA、DF,且AD=2DF,過點(diǎn)B作AD的平行線交FD的延長線于點(diǎn)E.
(1)求證:四邊形ABED為菱形;
(2)若BD=6,∠E=60°,求四邊形ABEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,李林和王聰兩人在玩轉(zhuǎn)盤游戲時(shí),分別把轉(zhuǎn)盤,分成3等份和4等份,并標(biāo)上數(shù)字(如圖所示).游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)兩轉(zhuǎn)盤停止后,若指針?biāo)竷蓚(gè)數(shù)字之和小于4,則李林獲勝;若數(shù)字之和大于4,則王聰獲勝,如果指針落在分割線上,則需要重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.
(1)用列表法或畫樹狀圖法中的一種方法,求所有可能出現(xiàn)的結(jié)果.
(2)該游戲規(guī)則對雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了綠化環(huán)境,某中學(xué)八年級(jí)(3班)同學(xué)都積極參加了植樹活動(dòng),下面是今年3月份該班同學(xué)植樹情況的扇形統(tǒng)計(jì)圖和不完整的條形統(tǒng)計(jì)圖:
請根據(jù)以上統(tǒng)計(jì)圖中的信息解答下列問題.
(1)植樹3株的人數(shù)為 ;
(2)扇形統(tǒng)計(jì)圖中植樹為1株的扇形圓心角的度數(shù)為 ;
(3)該班同學(xué)植樹株數(shù)的中位數(shù)是
(4)小明以下方法計(jì)算出該班同學(xué)平均植樹的株數(shù)是:(1+2+3+4+5)÷5=3(株),根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí)
判斷小明的計(jì)算是否正確,若不正確,請寫出正確的算式,并計(jì)算出結(jié)果
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com