分析 (1)由矩形的性質(zhì)和角平分線的定義得出∠DEC=∠ECB=∠BEC,推出BE=BC即可;
(2)證出AE=AB=2,根據(jù)勾股定理求出BE,即可得出BC的長.
解答 解:(1)△BEC是等腰三角形;理由如下:
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠BCE,
∵EC平分∠DEB,
∴∠DEC=∠BEC,
∴∠BEC=∠ECB,
∴BE=BC,即△BEC是等腰三角形.
(2)∵四邊形ABCD是矩形,
∴∠A=∠D=90°,
∵∠DCE=22.5°,
∴∠DEB=2×(90°-22.5°)=135°,
∴∠AEB=180°-∠DEB=45°,
∴∠ABE=∠AEB=45°,
∴AE=AB=2,
由勾股定理得:BC=BE=$\sqrt{A{E}^{2}+A{B}^{2}}$=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
答:BC的長是2$\sqrt{2}$.
點評 本題考查了矩形的性質(zhì),等腰三角形的判定,勾股定理的應用;熟練掌握矩形的性質(zhì),證出∠BEC=∠ECB是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 4x2-y2 | B. | 4x2+y2 | C. | -4x2-y2 | D. | -4x2+y2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (x+1)2=100 | B. | (x-1)2=100 | C. | (x+1)2=98 | D. | (x-1)2=98 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | a>1 | B. | a<-1 | C. | -1<a<1 | D. | -1<a<0或0<a<1 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 168元 | B. | 300元 | C. | 60元 | D. | 400元 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com