【題目】在四邊形中,,點的中點

情景引入:

1)如圖1,若的平分線,試判斷,DC之間的等量關(guān)系.

解決此問題可以用如下方法:延長的延長線于點,證明得到,從而把,轉(zhuǎn)化在一個三角形中即可判斷,之間的等量關(guān)系為,試證明該結(jié)論;

問題探究:

2)如圖2,點的延長線上一點,連,若恰好是的平分線,試探究,之間的等量關(guān)系,并證明你的結(jié)論.

【答案】(1)見解析;(2AB=AF+CF,理由見解析.

【解析】

1)由“AAS”可證CEF≌△BEA,可得AB=CF,即可得結(jié)論;
2)延長AEDF的延長線于點G,由“AAS”可證AEB≌△GEC,可得AB=CG,即可得結(jié)論.

解:(1AD=AB+DC
理由如下:∵AE是∠BAD的平分線
∴∠DAE=BAE
ABCD
∴∠F=BAE
∴∠DAF=F
AD=DF,
∵點EBC的中點
CE=BE,且∠F=BAE,∠AEB=CEF
∴△CEF≌△BEAAAS
AB=CF
AD=CD+CF=CD+AB
2AB=AF+CF
理由如下:如圖②,延長AEDF的延長線于點G

EBC的中點,
CE=BE,
ABDC
∴∠BAE=G.且BE=CE,∠AEB=GEC
∴△AEB≌△GECAAS
AB=GC
AE是∠BAF的平分線
∴∠BAG=FAG,
∵∠BAG=G,
∴∠FAG=G,
FA=FG
CG=CF+FG,
AB=AF+CF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某二元一次方程組的解是m為常數(shù)).若將看作平面直角坐標(biāo)系中一個點P的橫坐標(biāo),y看作點P的縱坐標(biāo),下列4種說法:

Px,y)一定不在第三象限;

②點Px,y)可能是坐標(biāo)原點;

③點Px,y)的縱坐標(biāo)y隨橫坐標(biāo)x增大而增大;

④點Px,y)的縱坐標(biāo)y隨橫坐標(biāo)x增大而減小.

其中,正確的是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是∠AOB內(nèi)任意一點,OP5,M,N分別是射線OAOB上的動點,若△PMN周長的最小值為5,則∠AOB的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工藝品專賣店計劃購進甲、乙兩種不同類型的木雕工藝品,已知件甲種工藝品的進價與件乙種工藝品的進價的和為元,件甲種工藝品的進價與件乙種工藝品的進價的和為元.

1)求每件甲種、乙種工藝品的進價分別是多少元;

2)如果購進甲種工藝品有優(yōu)惠,優(yōu)惠方法是:購進甲種工藝品超過件,超出部分可以享受折優(yōu)惠.若購進為正整數(shù))件甲種工藝品需要花費元,請你寫出的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃在“十周年”慶典當(dāng)天開展購物抽獎活動,凡當(dāng)天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:如圖,將圓形轉(zhuǎn)盤平均分成四個扇形,分別標(biāo)上1,2,3,4四個數(shù)字,抽獎?wù)哌B續(xù)轉(zhuǎn)動轉(zhuǎn)盤兩次,當(dāng)每次轉(zhuǎn)盤停止后指針?biāo)干刃蝺?nèi)的數(shù)字為每次所得的數(shù)(若指針指在分界線時重轉(zhuǎn));當(dāng)兩次所得數(shù)字之和為8時,返現(xiàn)金20元;當(dāng)兩次所得數(shù)字之和為7時,返現(xiàn)金15元;當(dāng)兩次所得數(shù)字之和為6時,返現(xiàn)金10元.某顧客參加一次抽獎,能獲得返還現(xiàn)金的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,∠ABC=∠DCB90°,ABBC.過點BBFAD,垂足為點F,

1)求證:∠DAB=∠FBC

2)點E為線段CD上的一點,連接AEBFG,若∠BAE+2EAD90°,AG1AB5,求線段CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成長方形零件PQMN,使長方形PQMN的邊QM在BC上,其余兩個頂點P,N分別在AB,AC上,求這個長方形零件PQMN面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線x=1為對稱軸的拋物線y=-x2+bx+c與x軸交于A、B兩點,其中點A的坐標(biāo)為(3,0).

(1)求點B的坐標(biāo);

(2)設(shè)點M(x1,y1)、N(x2,y2)在拋物線線上,且x1<x2<1,試比較y1、y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,某校舉辦了學(xué)生國學(xué)經(jīng)典大賽.比賽項目為:.唐詩;.宋詞;.論語;.三字經(jīng).比賽形式分單人組雙人組”.

(1)小麗參加單人組,她從中隨機抽取一個比賽項目,恰好抽中三字經(jīng)的概率是多少?

(2)小紅和小明組成一個小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則小紅和小明都沒有抽到論語的概率是多少?請用畫樹狀圖或列表的方法進行說明.

查看答案和解析>>

同步練習(xí)冊答案