【題目】某校門口豎著“前方學(xué)校,減速慢行”的交通指示牌CD,數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)將“測量交通指示牌CD的高度”作為一項(xiàng)課題活動(dòng),他們定好了如下測量方案:
項(xiàng)目 | 內(nèi)容 |
課題 | 測量交通指示牌CD的高度 |
測量示意圖 | |
測量步驟 | (1)從交通指示牌下的點(diǎn)M處出發(fā)向前走10 米到達(dá)A處; (2)在點(diǎn)A處用量角儀測得∠DAM=27°; (3)從點(diǎn)A沿直線MA向前走10米到達(dá)B處;(4)在點(diǎn)B處用量角儀測得∠CBA=18°. |
請(qǐng)你幫助該小組同學(xué)根據(jù)上表中的測量數(shù)據(jù),求出交通指示牌CD的高度.(參考數(shù)據(jù)sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個(gè)不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機(jī)摸出一張,求摸出的牌面圖形是中心對(duì)稱圖形的概率;
(2)小明和小亮約定做一個(gè)游戲,其規(guī)則為:先由小明隨機(jī)摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形都是軸對(duì)稱圖形小明獲勝,否則小亮獲勝,這個(gè)游戲公平嗎?請(qǐng)用列表法(或樹狀圖)說明理由(紙牌用表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形中,∥,,直線.當(dāng)直線沿射線方向,從點(diǎn)開始向右平移時(shí),直線與四邊形的邊分別相交于點(diǎn)、.設(shè)直線向右平移的距離為,線段的長為,且與的函數(shù)關(guān)系如圖2所示,則四邊形的周長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是弦,是弧的中點(diǎn),過點(diǎn)作垂直于直線垂足為,交的延長線于點(diǎn).
求證:是的切線;
若,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一種雪球夾的簡化結(jié)構(gòu)圖,其通過一個(gè)固定夾體和一個(gè)活動(dòng)夾體的配合巧妙地完成夾雪、投雪的操作,不需人手直接接觸雪,使用方便,深受小朋友的喜愛.當(dāng)雪球夾閉合時(shí),測得∠AOB=30°,OA=OB=14 cm,則此款雪球夾制作的雪球的直徑AB的長度為________ cm.(結(jié)果保留一位小數(shù).參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長AP交CD于F點(diǎn),
(1)求證:△CBE≌△CPE;
(2)求證:四邊形AECF為平行四邊形;
(3)若矩形ABCD的邊AB=6,BC=4,求△CPF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD是△ABC的中線,AE∥BC,射線BE交AD于點(diǎn)F,交⊙O于點(diǎn)G,點(diǎn)F是BE的中點(diǎn),連接CE.
(1)求證:四邊形ADCE為平行四邊形;
(2)若BC=2AB,求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形Ⅰ的面積為6,矩形Ⅱ中的三條邊總長為6,則下列說法不正確的是( )
A.矩形Ⅰ中一組鄰邊的長滿足反比例函數(shù)關(guān)系
B.矩形Ⅰ中一組鄰邊的長可能是3+和3﹣
C.矩形Ⅰ的周長不可能是8
D.矩形Ⅱ的最大面積是3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線y=x+4與拋物線y=﹣x2+bx+c(b,c是常數(shù))交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B在y軸上.設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)C.
(1)求該拋物線的解析式;
(2)P是拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),
①如圖2,若點(diǎn)P在直線AB上方,連接OP交AB于點(diǎn)D,求的最大值;
②如圖3,若點(diǎn)P在x軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)E或F恰好落在y軸上,直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com