【題目】如圖1,在四邊形中,,,直線.當直線沿射線方向,從點開始向右平移時,直線與四邊形的邊分別相交于點、.設直線向右平移的距離為,線段的長為,且的函數(shù)關系如圖2所示,則四邊形的周長是_____.

【答案】

【解析】

根據(jù)圖1直線l的平移過程分為三段,當FA重合之前,xy都不斷增大,當當FA重合之后到點E與點C重合之前,x增加y不變,E與點C重合后繼續(xù)運動至FD重合x增加y減小.結合圖2可知BC=5,AD=7-4=3,由∠B=30°可知AB=,當FA重合時,把CD平移到E點位置可得三角形AED′為正三角形,可得CD=2,進而可求得周長.

由題意和圖像易知BC=5,AD=7-4=3

BE=4時(即FA重合),EF=2

又∵且∠B=30°

AB=,

∵當FA重合時,把CD平移到E點位置可得三角形AED′為正三角形

CD=2

∴AB+BC+CD+AD=+5+2+3=10+

故答案時.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,真線軸,軸分別交于、兩點,為等腰直角三角形,且.若點恰好落在函數(shù))在第二象限內(nèi)的圖象上,則的值為(

A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,拋物線經(jīng)過點兩點,且與y軸交于點C

1)求拋物線的表達式;

2)如圖①,在拋物線的對稱軸上尋找一點M,使得ACM的周長最小,求點M的坐標.

3)如圖②,用寬為4個單位長度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P,Q兩點(點P在點Q的左側(cè)),連接PQ,在線段PQ上方拋物線上有一動點D,連接DP,DQ.若點P的橫坐標為,求DPQ面積的最大值,并求此時點D的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本

1當銷售單價為70元時,每天的銷售利潤是多少?

2求出每天的銷售利潤y與銷售單價x之間的函數(shù)關系式,并求出自變量的取值范圍

3如果該企業(yè)每天的總成本不超過7000元,那么銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?每天的總成本=每件的成本×每天的銷售量

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.

(1)求這個二次函數(shù)的解析式;

(2)是否存在點P,使POC是以OC為底邊的等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;

(3)動點P運動到什么位置時,PBC面積最大,求出此時P點坐標和PBC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CDO的直徑,點BO上,連接BC、BD,直線ABCD的延長線相交于點A,AB2ADAC,OEBD交直線AB于點EOEBC相交于點F

1)求證:直線AEO的切線;

2)若O的半徑為3,cosA,求OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步促進“美麗校園”創(chuàng)建工作,某校團委計劃對八年級五個班的文化建設進行檢查,每天隨機抽查一個班級,第一天從五個班級隨機抽取一個進行檢查,第二天從剩余的四個班級再隨機抽取一個進行檢查,第三天從剩余的三個班級再隨機抽取一個進行檢查…,以此類推,直到檢查完五個班級為止,且每個班級被選中的機會均等

(1)第一天,八(1)班沒有被選中的概率是   ;

(2)利用網(wǎng)狀圖或列表的方法,求前兩天八(1)班被選中的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校門口豎著“前方學校,減速慢行”的交通指示牌CD,數(shù)學“綜合與實踐”小組的同學將“測量交通指示牌CD的高度”作為一項課題活動,他們定好了如下測量方案:

項目

內(nèi)容

課題

測量交通指示牌CD的高度

測量示意圖

測量步驟

(1)從交通指示牌下的點M處出發(fā)向前走10 米到達A處;

(2)在點A處用量角儀測得∠DAM27°;

(3)從點A沿直線MA向前走10米到達B處;(4)在點B處用量角儀測得∠CBA18°.

請你幫助該小組同學根據(jù)上表中的測量數(shù)據(jù),求出交通指示牌CD的高度.(參考數(shù)據(jù)sin27°≈0.45,cos27°≈0.89,tan27°≈0.51sin18°≈0.31,cos18°≈0.95tan18°≈0.32)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖拋物線y=ax2+bx+c的圖象交x軸于A(﹣2,0)和點B,交y軸負半軸于點C,且OB=OC,下列結論:;;.其中正確的有(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案