【題目】如圖,拋物線(xiàn)與軸交于,兩點(diǎn),與軸交于點(diǎn).
(1)求,的值;
(2)若點(diǎn)是拋物線(xiàn)上的一點(diǎn),且位于直線(xiàn)上方,連接,,.當(dāng)四邊形的面積有最大值時(shí),求點(diǎn)的坐標(biāo).
【答案】(1),;(2)點(diǎn)的坐標(biāo)為.
【解析】
(1)把點(diǎn)A、B坐標(biāo)代入拋物線(xiàn)解析式即可求出a、b的值;
(2)過(guò)點(diǎn)D作DF⊥x軸,交BC于點(diǎn)E,先求出直線(xiàn)BC的解析式,設(shè)出點(diǎn)D的坐標(biāo),再根據(jù)D、E橫坐標(biāo)相同求出點(diǎn)E的縱坐標(biāo),然后根據(jù)“鉛錘法”可表示出△BCD的面積,根據(jù)二次函數(shù)的性質(zhì)可求出最值,因?yàn)椤?/span>ABC的面積為固定的,故當(dāng)△BCD面積最大時(shí),則四邊形ABCD的面積最大,據(jù)此即可求解.
(1)把點(diǎn)A(﹣1,0)、B(4,0)代入拋物線(xiàn)可得
,
解得:,,
故,.
(2)如圖,過(guò)點(diǎn)D作DF⊥x軸,交BC于點(diǎn)E,
由(1)可知拋物線(xiàn)解析式為:
令x=0,則y=2
∴點(diǎn)C的坐標(biāo)(0,2)
設(shè)直線(xiàn)的表達(dá)式為,
將,分別代入,
得
解得
故直線(xiàn)的表達(dá)式為.
且當(dāng)的面積最大時(shí),四邊形的面積最大.
設(shè),
則E點(diǎn)的橫坐標(biāo)為n,代入直線(xiàn)BC的表達(dá)式可得:,
即,
∴,
∴+,
∵S四邊形ABCD=S△ABC+S△BCD,且S△ABC為固定值,
∴當(dāng)S△BCD取得最大值時(shí),S四邊形ABCD取得最大值,
∵S△BCD=
根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)時(shí),取最大值,此時(shí)S四邊形ABCD取得最大值,
將代入拋物線(xiàn)解析式可得:
此時(shí)點(diǎn)的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生對(duì)排球、羽毛球、足球、籃球(以下分別用A、B、C、D表示)這四種球類(lèi)運(yùn)動(dòng)的喜好情況.對(duì)全體學(xué)生進(jìn)行了抽樣調(diào)查(每位學(xué)生只能選一項(xiàng)最喜歡的運(yùn)動(dòng)),并將調(diào)查情況繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息回答下面問(wèn)題:
(1)本次參加抽樣調(diào)查的學(xué)生有 人.
(2)補(bǔ)全兩幅統(tǒng)計(jì)圖.
(3)若從本次參加抽樣調(diào)查的學(xué)生中任取1人,則此人喜歡哪類(lèi)球的概率最大?求其概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象上一點(diǎn)A(m,4),過(guò)點(diǎn)A作AB⊥x軸于B,CD∥AB,交x軸于C,交反比例函數(shù)圖象于D,BC=2,CD=.
(1)求反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P是y軸上一動(dòng)點(diǎn),求PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)從以下(A)、(B)兩題中任選一個(gè)解答.
(A)已知:拋物線(xiàn)交軸于點(diǎn)和點(diǎn),交軸于點(diǎn).
(1)拋物線(xiàn)的解析式為_____________;
(2)點(diǎn)為第一象限拋物線(xiàn)上一點(diǎn),是否存在使面積最大的點(diǎn)?若不存在,請(qǐng)說(shuō)明理由,若存在,求出點(diǎn)的坐標(biāo);
(3)點(diǎn)的坐標(biāo)為,連接將線(xiàn)段繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)得線(xiàn)段(點(diǎn)分別與點(diǎn)對(duì)應(yīng)),使點(diǎn)都在拋物線(xiàn)上,請(qǐng)直接寫(xiě)點(diǎn)的坐標(biāo).
(B)如圖,已知拋物線(xiàn)與軸從左至右交于兩點(diǎn),與軸交于點(diǎn).
(1)拋物線(xiàn)的解析式為___________:
(2)是第一象限內(nèi)拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)不重合),過(guò)點(diǎn)作軸于點(diǎn)交直線(xiàn)于點(diǎn),連接,直線(xiàn)能否把分成面積之比為的兩部分?若能,請(qǐng)求出點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由;
(3)若為拋物線(xiàn)對(duì)稱(chēng)軸上一動(dòng)點(diǎn),為直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
我選做的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是BC邊上的一個(gè)動(dòng)點(diǎn),沿著AE翻折矩形,使點(diǎn)B落在點(diǎn)F處若AB=3,BC=AB,解答下列問(wèn)題:
(1)在點(diǎn)E從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C的過(guò)程中,求點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng);
(2)當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),試判斷FC與AE的位置關(guān)系,并說(shuō)明你的理由;
(3)當(dāng)點(diǎn)F在矩形ABCD內(nèi)部且DF=CD時(shí),求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖1,圓柱體鉛筆插入卷筆刀充分卷削,得到底面直徑BC為2的圓錐,∠BAC=30°.底面邊長(zhǎng)為1的正六棱柱鉛筆插入卷削,得到如圖2所示鉛筆和鋸齒狀木屑(木屑厚度忽略不計(jì)),木屑鋸齒齒鋒點(diǎn)G相鄰凹陷最低點(diǎn)為H,則AG=________,GH=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為拋物線(xiàn)的部分圖象,拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),下列結(jié)論:
①4ac<b2
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中正確的結(jié)論是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠DAB=60°,AB=5,BC=3,點(diǎn)P從點(diǎn)D出發(fā),沿DC,CB向終點(diǎn)B勻速運(yùn)動(dòng).設(shè)點(diǎn)P所走過(guò)的路程為x,點(diǎn)P所經(jīng)過(guò)的線(xiàn)段與AD,AP所圍成的圖形的面積為y,y隨x的變化而變化.在下列圖象中,能正確反映y與x的函數(shù)關(guān)系的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,四邊形OACB為菱形,OB在x軸的正半軸上,∠AOB=60°,過(guò)點(diǎn)A的反比例函數(shù)y= 的圖像與BC交于點(diǎn)F,則△AOF的面積為 ______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com